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ABSTRACT

In this study, we consider the Timoshenko system with coupled frictional dissipative effects
through a real matrix B of order two. The objective is to study, using the Theory of Linear
Semigroups, the existence and uniqueness of the solution for this system. Furthermore, by
employing Prüss Theorem, we investigate the exponential stability of the Timoshenko system
in question. We conclude that when the matrix B is a positive definite matrix, the system
exhibits exponential decay. To complement the work, we present a particular case where the
matrix B is not positive definite. However, exponential stability holds and is dependent on the
equality of the wave speeds.

Keywords: Timoshenko system; Well-Posedeness; Exponential Stability.
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RESUMO

Neste trabalho consideramos o sistema Timoshenko com efeitos dissipativos friccionais acopla-
dos por meio de uma matriz real B de ordem dois. O objetivo é estudar utilizando a teoria de
semigrupos lineares, a existência e unicidade de solução deste sistema. Além disso, ao empre-
gar o Teorema de Prüss, investigamos a estabilidade exponencial do sistema de Timoshenko em
questão. Concluímos que quando a matrizB é uma matriz positiva definida, o sistema apresenta
decaimento exponencial. Para complementar o trabalho, apresentamos um caso particular em
que a matriz B não é positiva definida. No entanto, a estabilidade exponencial se mantém e
depende da igualdade das velocidades das ondas.

Palavras-chave: Sistema de Timoshenko; Boa colocação; Estabilidade exponencial.
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1 INTRODUCTION

The Timoshenko system is a system of partial differential equations which refers to a
theoretical model used in the analysis of beams, developed by the Soviet engineer Stephen
Timoshenko. Unlike the more simplified Euler-Bernoulli beam theory, the Timoshenko sys-
tem considers the effects of shear deformation and rotation bending effects. This makes the
Timoshenko system well-suited for analyzing structures such as thin beams or beams subjected
to complex loading conditions.

The variables considered in the system are shear deformation and rotational bending ef-
fects, which are denoted by φ = φ(x, t) and ψ = ψ(x, t), both depending on the position
x ∈ [0, l], where l is the length of the beam, and the time t ≥ 0, as it can be seen in Figure
1.1. In summary, the variables describe how the beam deforms in response to applied forces
and moments.

Figure 1.1: Timoshenko Beam. Font: Sozzo [14]

According to Timoshenko [15] and [16], the governing equations for φ and ψ are given
by

ρAφtt = Sx, (1.1)

ρIψtt = Mx − S, (1.2)

where ρ is the mass density, A is the area, I the moment of inertia of a cross section of a beam,
S is the shear force and M the bending moment. Additionally, the elastic constitutive equations
describing the relationship for shear force and bending moment are expressed as follows

S = k′GA(φx + ψ), (1.3)

M = EIψx, (1.4)
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where k′ is a shear correction factor, and G and E denote the shear and Young’s modulus,
respectively. The later, illustratively, are represented in Figure 1.2 where the arrows depict the
applied force on the object.

Figure 1.2: Shear force and Bending moment. Font:[14]

Replacing (1.3)-(1.4) into (1.1)-(1.2) and denoting the constants as

ρ1 = ρA, ρ2 = ρI, k = k′GA, b = EI,

we obtain the following Timoshenko system

ρ1φtt − k(φx + ψ)x = 0

ρ2ψtt − bψxx + k(φx + ψ) = 0.

The focal point of our exploration lies within the mathematical framework of the Tim-
oshenko problem, with dissipative effect motivated by Alves [3], captured by the following
system of partial differential equations

ρ1φtt − k(φx + ψ)x + b11φt + b12ψt = 0 in (0, l)× (0,∞), (1.5)

ρ2ψtt − bψxx + k(φx + ψ) + b21φt + b22ψt = 0 in (0, l)× (0,∞). (1.6)

In this system, b11, b12, b21, b22 ∈ R constitute the damping matrix B. We further assume
that the beam is fixed at the ends 0, l. The crux of our investigation lies in demonstrating the
exponential stability of the system above, under the proper assumptions on b11, b12, b21, b22.

Before delving further into the purpose of this work, let us mention some results about
exponential stability. Raposo et al. [12] investigated the Timoshenko system with frictional
dissipation acting on both equations. Precisely, the system (1.5)-(1.6) with b11 = b22 = 1 and
b12 = b21 = 0, as given by

ρ1φtt − k(φx + ψ)x + φt = 0 in (0, l)× (0,∞),

ρ2ψtt − bψxx + k(φx + ψ) + ψt = 0 in (0, l)× (0,∞).
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The main result in [12] is that the problem exhibits exponential stability.
Rivera et al. [2] explored the Timoshenko systems with frictional dissipation affecting

only the vertical displacement, specifically the system (1.5)-(1.6) with b11 = 1 and b12 = b21 =

b22 = 0, as it follows

ρ1φtt − k(φx + ψ) + φt = 0 in (0, l)× (0,∞),

ρ2ψtt − bψxx + k(φx + ψ) = 0 in (0, l)× (0,∞).

In this setup a condition for the exponential stability is k
b
= ρ1

ρ2
, in other words, the wave speeds

are the same.
In Soufyane [13], the damping matrix coefficients were defined by b22 = β(x) and b11 =

b12 = b21 = 0, where β > 0 is a continuous function of the spatial variable. The system is given
by

ρ1φtt − k(φx + ψ) = 0 in (0, l)× (0,∞),

ρ2ψtt − bψxx + k(φx + ψ) + β(x)ψt = 0 in (0, l)× (0,∞).

This reference demonstrates exponential stability under the condition of equal wave speeds.
In light of the referenced works, our aim is to extend the findings derived by Raposo et

al. [12] by exploring a wider range of matrices. To achieve these objectives, this work will be
structured as follows: In Chapter 2, we will establish the theoretical groundwork for the present
work, presenting some results in functional analysis, Sobolev spaces, and semigroups of linear
operators. We will provide references where the statements and proofs of these results can be
found, among which the following stand out: the Theorems of Lumer-Phillips (Theorem 2.45)
and Lax-Milgram (Theorem 2.14), which will guarantee the existence and uniqueness of a so-
lution for our system. Furthermore, we will present the Prüss Theorem (Theorem 2.47), which
will be used to obtain the exponential stability results. In Chapter 3, we will use the previous
results to study the well-posedness of our system. This chapter is divided into presenting the
problem, formulating the semigroup, and finally, proving its well-posedness. In Chapter 4, we
will show that the system is exponentially stable, considering the damping matrix B as a posi-
tive definite matrix. Finally, in Chapter 5, we will work on a similar model to [13] with constant
damping parameter β = 1 where the hypothesis of B being a positive definite matrix is not
satisfied, but it stability holds under proper assumptions.
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2 PRELIMINARIES

This chapter aims to provide a theoretical foundation for this work. The presented results
are preliminary and do not encompass the entire conceptual framework, highlighting only the
main results used.

2.1 FUNCTIONAL ANALYSIS

In this section we will denote K as the field of real number R or the field of complex
number C.

Lemma 2.1 (Young Inequality I). Let a and b be non-negative constants and 1 < p, q < ∞,

such that, 1
p
+ 1

q
= 1, then

ab ≤ ap

p
+
bq

q
.

Proof. See Evans [6], page 622, Section B.2.

Note 1. The numbers p and q which satisfies 1
p
+ 1

q
= 1 are known as the conjugate exponents.

Lemma 2.2 (Young Inequality II). Let a and b non-negatives constants, 1 < p, q <∞ conju-

gate exponents. Then, given ϵ > 0 it holds that

ab ≤ ϵap + Cϵb
q,

where Cϵ =
(ϵp)

− q
p

q
.

Proof. See page 622 from [6], Section B.2.

Definition 2.3 (Norm). Let X be a vector space over K. A norm in X is a function ∥ · ∥X :

X −→ R with the following properties

(N1) ∥x∥X ≥ 0,

(N2) ∥x∥X = 0 ⇔ x = 0,

(N3) ∥αx∥X = |α| ∥x∥X , ∀x ∈ X and α ∈ K,

(N4) ∥x+ y∥X ≤ ∥x∥X + ∥y∥X , ∀x, y ∈ X.

Definition 2.4 (Normed space). A normed space is a vector space with a well defined norm.

Definition 2.5. A sequence in set X is a mapping x : N −→ X which we denote by xn ≡ x(n)

and x(N) ≡ (xn)n∈N. A subsequence of (xn)n∈N is a restriction x|N′ : N′ −→ X of the x

function to a infinity subset N′ ⊂ N.
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Definition 2.6. Consider (xn)n∈N a sequence in a normed vector space (X, ∥ · ∥X). The se-

quence is said to be

(i) bounded if there is M > 0, such that, ∥xn∥X ≤M, ∀n ∈ N;

(ii) convergent in X if exists x ∈ X satisfying

∀ϵ > 0,∃n0 ∈ N, such that, ∥xn − x∥X < ϵ, ∀n > n0,

(iii) a Cauchy sequence in X if

∀ϵ > 0,∃n0 ∈ N, such that, ∥xm − xn∥X < ϵ, ∀m,n > n0.

Definition 2.7 (Banach Space). A normed vector space (X, ∥ · ∥X) is called a Banach space if

every Cauchy sequence in X converges in X .

Note 2. We will denote L(X, Y ) the set of linear and bounded operators A : X −→ Y . If
X = Y , we denote by L(X).

Theorem 2.8. Consider X and Y two vector normed spaces and A : X −→ Y a linear

operator. Then, A is bounded if, and only if, A is continuous.

Proof. See Kreyszig [7] Theorem 2.7-9 (a), page 97.

Definition 2.9 (Inner product). LetX be a vector space over K. An inner product is a function

(·, ·)X : X ×X −→ K with the following properties

(P1) For all x ∈ X , (x, x)X ≥ 0 and (u, u)X = 0 ⇔ x = 0,

(P2) For all x, y ∈ X , holds (x, y)X = (y, x)X ,

(P3) For all, x, y ∈ X , and α, β ∈ K holds (αx, y)X = α(x, y)X and (x, βy)X = β(x, y)X ,

(P4) For all x, y, z ∈ X , (x+ y, z)X = (x+ z)X + (x+ y)X .

Definition 2.10. Let X be a vector space equipped with inner product (·, ·)X . The norm defined

by ∥x∥X =
√

(x, x)X is said to be induced by the inner product (·, ·)X .

Definition 2.11 (Hilbert space). A Banach space (X, ∥ · ∥X) is called a Hilbert space when X

is complete with respect to the norm induced by the inner product on X .

Definition 2.12. Let X and Y be K vector spaces. A sesquilinear form is a function in two

variables a : X × Y −→ K that satisfies the following properties

(i) a(x+ y, z) = a(x, z) + a(y, z), ∀x, y ∈ X and z ∈ Y ;

(ii) a(x, y + z) = a(x, y) + a(x, z), ∀x ∈ X and y, z ∈ Y ;
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(iii) a(λx, y) = λa(x, y), ∀x ∈ X, y ∈ Y and λ ∈ K;

(iv) a(x, λy) = λa(x, y), ∀x ∈ X, y ∈ Y and λ ∈ K.

Definition 2.13. Let X and Y normed vector spaces. A sesquilinear form a : X × Y −→ K is

(i) continuous if there is C > 0, such that, |a(x, y)| ≤ C∥x∥X∥y∥Y , for all (x, y) ∈ X × Y ;

(ii) coercive if there is C > 0, such that, Re{a(x, x)} ≥ C∥x∥2X , for all x ∈ X .

Theorem 2.14 (Lax-Milgram). Consider X a real (complex) Hilbert space and a continuous

and coercive bilinear (sesquilinear) form a : X × X −→ K. Then, for every bounded linear

(antilinear) functional h, there is a unique x ∈ X , such that, a(x, y) = h(y), for all y ∈ X .

Proof. For the real case, see Brezis [4], Corollary 5.8, page 140. For the complex case, see
Oden [9], Corollary 6.6.2, page 595.

Definition 2.15. A normed space X is called reflexive if the canonical map

J : X → X ′′

x 7→ gx

is surjective, where gx : X ′ −→ K is given by gx(f) = f(x).

Theorem 2.16. Every Hilbert space is reflexive.

Proof. See [7], Theorem 4.6-6, page 242.

Definition 2.17. Let X be a Hilbert space. We say that operator A : D(A) ⊂ X −→ X is

dissipative if Re{(Ax, x)X} ≤ 0, ∀x ∈ D(A).

Theorem 2.18. Let A : D(A) ⊂ X −→ X be a dissipative operator, such that, the operator

IX − A is surjective. If X is a reflexive space, then D(A) = X .

Proof. See Pazy [10], Theorem 4.6, page 16.

Definition 2.19. Let X and Y be Banach spaces. A linear operator A : X −→ Y is said to

be compact if for every bounded sequence (xn)n∈N ⊂ X there is a subsequence (xnj
)j∈N, such

that, (A(xnj
))j∈N converges in Y .

Definition 2.20. Consider the linear operatorA of a Banach spaceX . The set formed by λ ∈ C
for which the linear operator (λIX−A) is invertible, its inverse is bounded and densely defined,

is said to be the resolvent set of T and denoted by ρ(A).

The set σ(A) = C \ ρ(A) is the spectrum of T . For λ ∈ ρ(A), we denote by R(λ,A) =

(λIX − A)−1 the resolvent of A.
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Definition 2.21. Consider X a Banach space and A : D(A) ⊂ X −→ X a linear operator.

We say that operator A has a compact resolvent if exists λ ∈ ρ(A), such that, (λIX − A)−1 is

compact.

Proposition 2.1. Let (X, ∥ · ∥X) be a Banach space and A : D(A) ⊂ X −→ X a linear

operator with ρ(A) ̸= ∅. Then, operator A has a compact resolvent if, and only if, the inclusion

map i : (D(A), ∥ · ∥D(A)) −→ (X, ∥ · ∥X) is compact.

Proof. See Engel [5] Proposition 5.8, page 107.

Proposition 2.2. Consider a Banach space X and a linear operator A : D(A) ⊂ X −→ X

with compact resolvent. Then, σ(A) is composed only by eigenvalues of A.

Proof. See [5] Corollary 1.15, Page 162.

2.2 THE SPACE Lp

Definition 2.22 (Lp(Ω) spaces). Let Ω ⊂ Rn open and 0 < p < ∞. Consider Lp(Ω) the set of

all measurable functions f : Ω −→ C, such that, |f |p is integrable in the Lebesgue sense in Ω,

that is

Lp(Ω) =

{
f : Ω −→ C

∣∣∣ f is measurable and
∫
Ω

|f(x)|p dx <∞

}
.

The functions f, g ∈ Lp are said to be equivalents (f ∼ g), if f = g almost everywhere in Ω.

We will indicate by Lp(Ω) the set

Lp(Ω) = Lp\ ∼ .

The Lp(Ω) norm is given by

∥f∥Lp(Ω) =

(∫
Ω

|f(x)|p dx

) 1
p

.

For p = ∞, we define

L∞(Ω) =

{
f : Ω −→ R

∣∣∣ f is bounded almost everywhere in Ω

}
.

Definition 2.23. Consider the function f : Ω −→ C. We call the essential supremum of f in Ω

the number

sup
x∈Ω

ess|f(x)| = inf
{
K
∣∣∣ |f(x)| ≤ K almost everywhere in Ω

}
.

The norm on L∞(∞) by

∥f∥L∞(Ω) = sup
x∈Ω

ess|f(x)| = inf
{
C > 0

∣∣∣ |f(x)| ≤ C almost everywhere in Ω
}
.
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Theorem 2.24. If 1 ≤ p ≤ ∞ then Lp(Ω) is a Banach space.

Proof. See [4] Theorem 4.8, pages 93 and 94.

Theorem 2.25 (Hölder Inequality). Let Ω ⊂ Rn open and p, q conjugate exponents where

1 ≤ p ≤ ∞. If f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

Proof. See [4] Theorem 4.6, page 92.

Corollary 2.3. Let 1 ≤ p ≤ q ≤ ∞. If f ∈ Lq(Ω) and |Ω| <∞, then f ∈ Lp(Ω) and

∥f∥Lp(Ω) ≤ |I|
1
p
− 1

q ∥f∥Lq(Ω).

Proof. See Adams and Fournier [1] Theorem 2.14, page 28.

Theorem 2.26 (Minkowiski Inequality). Consider f, g ∈ Lp(Ω) and 1 ≤ p ≤ ∞. Then,

∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω).

Proof. See [4] Theorem 4.7, pages 93.

Theorem 2.27. The space L2(Ω) is a Hilbert space with the following inner product

(u, v)2 =

∫
Ω

u(x)v(x) dx, ∀u, v ∈ L2(Ω).

Proof. See [1] Corollary 2.18, page 31.

Note 3. Note that, the inner product in L2(Ω) induces the following a norm

∥u∥22 = (u, u)2 =

∫
Ω

|u(x)|2 dx, ∀u ∈ L2(Ω).

Proof. See [4], page 93, Theorem 4.7.

Definition 2.28. Let Ω ⊂ Rn be a open set and u : Ω −→ C a continuous mapping. The

support of u is

supp(u) = {x ∈ Ω | u(x) ̸= 0}
Ω
.

We will denote by C0(Ω) = {u ∈ C(Ω) | supp(u) is compact}.

Definition 2.29. The space C∞
0 (Ω) is defined by

C∞
0 (Ω) = {f : Ω −→ K | infinitely differentiable with compact support}.

Proposition 2.4. Let Ω ⊂ Rn an open set and 1 ≤ p <∞, then C∞
0 (Ω) is dense in Lp(Ω).

Proof. See [4] Corollary 4.23, page 109.
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2.3 ONE-DIMENSIONAL SOBOLEV SPACES

2.3.1 The space W 1,p(I)

Let I = (a, b) be an interval with −∞ ≤ a < b ≤ +∞ and 1 ≤ p ≤ ∞.

Definition 2.30. The Sobolev space W 1,p(I) is defined as

W 1,p(I) =

{
u ∈ Lp(I) | ∃g ∈ Lp(I) where

∫
I

uφ′ dx = −
∫
I

gφ dx, ∀φ ∈ C1
0(I)

}
.

Particularly, when p = 2, is denoted as W 1,2(I) = H1(I), that is

H1(I) =

{
u ∈ L2(I) | ∃g ∈ L2(I) where

∫
I

uφ′ dx = −
∫
I

gφ dx, ∀φ ∈ C1
0(I)

}
.

Note 4. Given u ∈ W 1,p(I), the function g is called as weak derivative of u in W1,p(I) and will
be denoted by u′. The weak derivative, conditioned on its existence, is unique except on a set
with Lebesgue measure zero.

Note 5. The space W 1,p(I) is equipped with the norm

∥u∥W 1,p(I) = ∥u∥Lp(I) + ∥u′∥Lp(I)

or with the equivalent norm

∥u∥W 1,p(I) = (∥u∥pLp(I) + ∥u′∥pLp(I))
1
p .

Note 6. When p = 2, the space W 1,2(I) = H1(I) is a Hilbert space with the inner product
defined by

(u, v)H1(I) = (u, v)L2(I) + (u′, v′)L2(I).

Theorem 2.31. The Sobolev space W 1,p(I) is a Banach space for 1 ≤ p ≤ ∞.

Proof. See [4] Proposition 8.1, page 203.

Lemma 2.32. Consider u, v ∈ W 1,p(I) where 1 ≤ p <∞. Then,

(i) uv ∈ W 1,p(I) and (uv)′ = u′v + uv′.

(ii) Also, the following formula holds∫ b

a

u′(s)v(s)ds = u(b)v(b)− u(a)b(a)−
∫ b

a

u(s)v′(s)ds.

Proof. See [4] Corollary 8.10, page 215.
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2.3.2 The space W 1,p
0 (I)

Definition 2.33. Let 1 ≤ p ≤ ∞. The space W 1,p
0 (I) is defined as

W 1,p
0 (I) = C1

0(I)
W 1,p(I)

.

If p = 2, then

W 1,2
0 (I) = H1

0 (I) = C1
0(I)

H1(I)
.

Note 7. The space W 1,p
0 (I), 1 ≤ p < ∞ are normed vector spaces equipped with W 1,p(I)

norm.

Theorem 2.34. Consider u ∈ W 1,p(I). Then, u ∈ W 1,p
0 (I) if, and only if, u = 0 in ∂I .

Proof. See [6] Theorem 2 , page 259.

Note 8. We have that W 1,p
0 (I) = {u ∈ W 1,p(I);u = 0 in ∂I}.

Theorem 2.35 (Poincaré Inequality). If I is a bounded interval. Then, exists a constant cp =

cp(med(I)) > 0 such that

∥u∥W 1,p(I) ≤ cp∥u′∥Lp(I), ∀u ∈ W 1,p
0 (I).

Proof. See [4] Proposition 8.13, page 218.

Note 9. If I is bounded, W 1,p
0 (I) is a normed vector space with the following norm

∥u∥W 1,p
0 (I) = ∥u′∥Lp(I).

Note 10. If p = 2 then H1
0 (I) = W 1,2

0 (I) is a Hilbert space with the inner product is given by

(u, v)H1
0 (I)

=

∫
I

v′(x)u′(x) dx.

This inner product induces the following norm

∥u∥2H1
0 (I)

= (u, u)H1
0 (I)

=

∫
I

(u′(x))2 dx = ∥u′∥2L2(I),

equivalent to the norm ∥u∥W 1,p
0 (I) = ∥u′∥Lp(I).

2.3.3 The space Wm,p(I)

Definition 2.36. Let 1 ≤ p ≤ ∞, α = (α1, . . . , αN) ∈ ZN
+ , |α| = α1 + . . . αN and u, g ∈

Lp(I). We say g is the alpha− th order weak derivative of u when∫
I

uDαφdx = (−1)|α|
∫
I

gφ dx, ∀φ ∈ C∞
0 (I).
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Definition 2.37. Consider 1 ≤ p ≤ ∞ and m ∈ Z+. We define the Sobolev space Wm,p(I) as

the vector subspace of Lp(I) given by

Wm,p(I) = {u ∈ Lp(I) | ∃u′, u′′, . . . , u(m) ∈ Lp(I)},

where u′, u′′, . . . , u(m) denote the weak derivatives of order 1, 2, . . . ,m, respectively. When

p = 2 we use the notation Wm,2(I) = Hm(I).

Note 11. Here, the first and second order weak derivatives will be denoted by ux and uxx,
respectively.

Theorem 2.38. The space Wm,p(I), 1 ≤ p ≤ ∞ is a Banach space with the following norm

∥u∥Wm,p(I) =

( ∑
|α|≤m

∥Dαu∥pLp(I)

) 1
p

, 1 ≤ p <∞,

∥u∥Wm,∞(I) =
∑
|α|≤m

∥Dαu∥L∞(I), p = ∞.

Proof. See [6] Theorem 2, page 249.

Note 12. The spaces Wm,2(I) = Hm(I) are Hilbert spaces with the following inner product

(u, v)Hm(I) =
∑
|α|≤m

(Dαu,Dαv)L2(I), ∀u, v ∈ Hm(I).

Definition 2.39. Consider 1 ≤ p <∞. The space Wm,p
0 (I) is defined as

Wm,p
0 (I) = Cm

0 (I)
Wm,p

.

When p = 2 it is also denoted

Wm,2
0 (I) = Cm

0 (I)
Wm,2(I)

= Hm
0 (I).

Definition 2.40. Let X and Y Banach spaces with Y ⊂ X . We say that Y is continuously

embedded in X if inclusion map

i : Y → X

y 7→ i(y) = y,

is continuous. In this context, we write Y ↪→ X . We say Y is compactly embedded into X when

the inclusion map i : Y −→ X is compact. We denote the compact embedding of Y into X by

Y
c
↪→ X .

Theorem 2.41 (Sobolev Embeddings). We have that
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(i) Wm,p(I) ⊂ L∞(I), for all 1 ≤ p ≤ ∞ and every m ≥ 1, with a continuous embedding.

(ii) If I is bounded then Wm,p(I) ⊂ Cm−1(I) for all 1 < p ≤ ∞ and every m ≥ 1 with a

continuous and compact embedding.

(iii) If I is bounded the Wm,p(I) ⊂ Lq(I) for all 1 ≤ q < ∞ and every m ≥ 1, where
1
p
+ 1

q
= 1, with a compact embedding.

Proof. See [4] Theorem 8.8, page 212.

2.4 SEMIGROUPS OF LINEAR OPERATORS

Throughout this section we will introduce some results and definitions of the semigroups
of linear operators theory.

Definition 2.42. Let X be a Banach space. A one parameter family {S(t)}t≥0, of bounded

linear operators from X into X is a semigroup of bounded linear operator on X if

(i) S(0) = IX;

(ii) S(t+ s) = S(t)S(s), for every t, s ≥ 0.

(iii) Moreover, the semigroup is called as a C0-semigroup, if lim
t→0+

∥S(t)− x∥X = 0, for each

x ∈ X.

Definition 2.43. The linear operator A : D(A) ⊂ X → X defined as

D(A) =

{
x ∈ X

∣∣∣ lim
t→0

S(t)(x)− IX(x)

t
exists

}

and

A(x) = lim
t→0

S(t)(x)− IX(x)

t
, ∀x ∈ D(A)

is the infinitesimal generator of the semigroup {S(t)}t≥0.

Also, note that the domain D(A) of the operator A can be rewritten as

D(A) = {x ∈ X | Ax ∈ X}.

Theorem 2.44. Consider the abstract Cauchy problem

u′(t) = A(u(t)), t > 0,

u(0) = u0. (2.1)
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If operator A is the infinitesimal generator of a C0-semigroup {S(t)}t≥0 in a Banach Space X ,

then for each u0 ∈ D(A), there is a unique solution of (2.1) in

u ∈ C([0,∞); D(A)) ∩ C1((0,∞);X).

Proof. See [4] Theorem 7.4, page 185.

Theorem 2.45 (Lumer-Phillips). IfA is a infinitesimal generator of a contractionC0-semigroup

in a Banach space X , then

(i) A is a dissipative operator;

(ii) Im(λIX − A) = X, for all λ > 0.

Reciprocally, if

(iii) D(A) is dense in X;

(iv) A is a dissipative operator;

(v) Im(λ0IX − A) = X for some λ0 > 0.

Then A is the infinitesimal generator of a contraction C0-semigroup in X .

Proof. See [10] Theorem 4.3, page 14.

Definition 2.46. A semigroup {S(t)}t≥0 on X is exponentially stable if there are positive con-

stants C and k, such that

∥S(t)u0∥X ≤ Ce−kt∥u0∥X , ∀t ≥ 0 and u0 ∈ X.

Theorem 2.47 (Prüss). Let {S(t)}t≥0 be a contraction semigroup on a Hilbert Space X . Then,

{S(t)}t≥0 is exponentially stable if, and only if, the following conditions holds

ρ(A) ⊇ {iλ|λ ∈ R} = iR and lim sup
|λ|→∞

∥(iλIX − A)∥−1
L(X) <∞.

Proof. See Prüs [11], Theorem 4 and Corollary 5, page 853-855 .

2.5 POSITIVE DEFINITE MATRIX

Definition 2.48 (Hermitian Matrix). A square matrix B is said to be Hermitian (or symmetric

if K = R) if B = B
⊤

, where superscript ⊤ denotes the vector transpose operation.
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Definition 2.49 (Positive Definite Matrix). A square Hermitian matrix B of order n × n is

said to be a positive definite if

x⊤ ·Bx > 0, ∀x ∈ Cn − {0},

where · denotes the inner product in Rn.

Theorem 2.50. If B = [bij] is a positive definite matrix, then

(i) bii > 0;

(ii) det(B) > 0.

Proof. (i) SinceB is a positive definite matrix, then for all x ∈ Cn−{0}, we have x⊤ ·Bx > 0.

In particular, consider x = ei, where ei is the standard basis vector. Then,

ei
⊤ ·Bei > 0.

However, ei⊤ ·Bei = bii. Hence bii > 0 for i = 1, · · · , n.

(ii) See Leon [8], page 339, Property II.

Lemma 2.51. Let b11, b12, b21, b22 ∈ R and B be a symmetric matrix defined by

B =

[
b11 b12

b12 b22

]
,

where b11, b22 > 0. Then there is a positive constant C, such that,

det(B)

b11 + b22
(|z1|2 + |z2|2) ≤ b11|z1|2 + 2b12 Re{z1z2}+ b22|z2|2 ≤ C(|z1|2 + |z2|2), (2.2)

for all z1, z2 ∈ C.

Proof. We start the proof by demonstrating the validity of the first inequality. Using Young
inequality

b11|z1|2 + 2b12Re{z1z2}+ b22|z2|2 ≥ b11|z1|2 −
b212
b22

|z1|2, (2.3)

and
b11|z1|2 + 2b12Re{z1z2}+ b22|z2|2 ≥ b22|z1|2 −

b212
b11

|z2|2. (2.4)

Multiplying (2.3) by b22 and (2.4) by b11, we get

b11b22|z1|2 + 2b22b12Re{z1z2}+ b222|z2|2 ≥ b11b22|z1|2 − b212|z1|2, (2.5)
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and
b211|z1|2 + 2b11b12Re{z1z2}+ b11b22|z2|2 ≥ b11b22|z2|2 − b212|z2|2. (2.6)

Adding (2.5) and (2.6)

b11|z1|2 + 2b12Re{z1z2}+ b22|z2|2 ≥
(b11b22 − b212)

b11 + b22
(|z1|2 + |z2|2).

This concludes the proof of the first inequality in (2.2).
On the other hand, using Cauchy-Schwarz inequality

b11|z1|2 + 2b12 Re{z1z2}+ b22|z2|2 ≤ b11|z1|2 + 2b12 |z1||z2|+ b22|z2|2. (2.7)

Using Young inequality

|z1||z2| ≤
1

2
|z1|2 +

1

2
|z2|2. (2.8)

Then, replacing (2.8) into (2.7), we have

b11|z1|2 + 2b12 Re{z1z2}+ b22|z2|2 ≤ b11|z1|2 + b12(|z1|2 + |z2|2) + b22|z2|2

≤ (b11 + b12)|z1|2 + (b22 + b12)|z2|2

≤ C(|z1|2 + |z2|2),

where C = max

{
b11 + b12, b22 + b12

}
, which proves the second inequality in (2.2).

The proof is complete.

Note 13. If B is a positive definite matrix, then, by Theorem 2.50, the constant det(B)
b11+b22

in (2.2)
is positive.
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3 WELL - POSEDENESS

3.1 THE PROBLEM

The aim of this chapter is to investigate the existence and uniqueness of solutions for the
following Timoshenko system using the Lumer-Philips Theorem (Theorem 2.45). Thus, let us
examine the set of equations

ρ1φtt − k(φx + ψ)x + b11φt + b12ψt = 0 in (0, l)× (0,∞), (3.1)

ρ2ψtt − bψxx + k(φx + ψ) + b21φt + b22ψt = 0 in (0, l)× (0,∞), (3.2)

with initial conditions

φ(·, 0) = φ0(·), φt(·, 0) = φ1(·), ψ(·, 0) = ψ0(·), ψt(·, 0) = ψ1(·), (3.3)

and Dirichlet boundary conditions

φ(0, t) = φ(l, t) = ψ(0, t) = ψ(l, t) = 0, t ≥ 0, (3.4)

where ρ1, ρ2, b, k > 0.

3.2 SEMIGROUP FORMULATION

In order to use the linear semigroup theory, we shall consider the notations

Φ = φt, Ψ = ψt and U = (φ,Φ, ψ,Ψ)⊤,

where, superscript ⊤ denotes the vector transpose operation.
Now, from the equations (3.1) and (3.2), we get

Ut =


Φ

k
ρ1
(φx + ψ)x − b11

ρ1
Φ− b12

ρ1
Ψ

Ψ
b
ρ2
ψxx − k

ρ2
(φx + ψ)− b21

ρ2
Φ− b22

ρ2
Ψ

 := AU (3.5)

and, by (3.3)
U(t = 0) = (φ0, φ1, ψ0, ψ1)

⊤ := U0.

So, it is possible to write the intial-boundary value problem (3.1)-(3.4) as the following
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abstract Cauchy problem

Ut = AU, t > 0,

U(0) = U0.
(3.6)

To approach (3.6) including the boundary conditions (3.4), we define space

H = H1
0 (0, l)× L2(0, l)×H1

0 (0, l)× L2(0, l). (3.7)

The space H is a Hilbert space with inner product (·, ·) : H×H −→ C defined by

(U, Ũ) =

∫ l

0

ΦΦ̃ dx+

∫ l

0

ΨΨ̃ dx+

∫ l

0

ψxψ̃x dx+

∫ l

0

φxφ̃x dx

≡ (Φ, Φ̃)2 + (Ψ, Ψ̃)2 + (ψx, ψ̃x)2 + (φx, φ̃x)2, (3.8)

where U = (φ,Φ, ψ,Ψ)⊤, Ũ = (φ̃, Φ̃, ψ̃, Ψ̃)⊤ and (·, ·)2 = (·, ·)L2(0,l). The inner product (3.8)
induces the following norm ∥ · ∥ : H −→ R+

∥U∥2 = (U,U) =

∫ l

0

ΦΦ dx+

∫ l

0

ΨΨ dx+

∫ l

0

ψxψx dx+

∫ l

0

φxφx dx

≡ ∥Φ∥22 + ∥Ψ∥22 + ∥ψx∥22 + ∥φx∥22,

where ∥ · ∥2 = ∥ · ∥L2(0,l).

In space H, we also consider the function (·, ·)H : H×H −→ C defined by

(U, Ũ)H = ρ1(Φ, Φ̃)2 + ρ2(Ψ, Ψ̃)2 + b(ψx, ψ̃x)2 + k(φx + ψ, φ̃x + ψ̃)2. (3.9)

This function induces the following map ∥ · ∥H : H −→ R+ defined as

∥U∥2H = (U,U)H = ρ1∥Φ∥22 + ρ2∥Ψ∥22 + b∥ψx∥22 + k∥φx + ψ∥22. (3.10)

Lemma 3.1. The map (·, ·)H : H×H −→ C defined in (3.9) is an inner product in H.

Proof. Let U ∈ H, such that, (U,U)H = 0. The definition (3.9) implies that

Φ = Ψ = ψx = φx + ψ = 0.

Now, Poincaré Inequality implies that ψ = φ = 0. Therefore, U = 0. The remaining properties
in Definition 2.9 can be inferred from the properties satisfied by the inner product in L2(0, l).

The following result is a consequence of Lemma 3.1.

Lemma 3.2. The map ∥ · ∥H : H −→ R+ defined in (3.10) is a norm in H.
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Lemma 3.3. The norms ∥ · ∥ and ∥ · ∥H are equivalent.

Proof. Firstly, observe that

∥U∥2H = ρ1∥Φ∥22 + ρ2∥Ψ∥22 + b∥ψx∥22 + k∥φx + ψ∥22
≤ C1

(
∥Φ∥22 + ∥Ψ∥22 + ∥ψx∥22 + ∥φx∥22

)
= C1∥U∥2.

where C1 = max
{
ρ1, ρ2, b, k

}
Secondly,

∥U∥2 = ∥Φ∥22 + ∥Ψ∥22 + ∥ψx∥22 + ∥φx + ψ − ψ∥22
≤ C2

(
ρ1∥Φ∥22 + ρ2∥Ψ∥22 + b∥ψx∥22 + k∥φx + ψ∥22

)
= C2∥U∥2H.

where C2 = max
{

1
ρ1
, 1
ρ2
, 1+cp

b
, 1
k

}
. The above inequalities imply that ∥ · ∥ and ∥ · ∥H are

equivalent norms in H.

Once we defined the phase space H, we can now define the domain of the operator A via
the following proposition.

Proposition 3.1. The domain of the operator A defined in (3.5) is given by

D(A) = {U ∈ H | φ, ψ ∈ H2(0, l) ∩H1
0 (0, l),Φ,Ψ ∈ H1

0 (0, l)}.

Proof. Firstly, remember that, from the Definition 2.43, the domain of operator A is given by
Λ={U ∈ H | AU ∈ H}. The inclusion D(A) ⊂ Λ is satisfied. Now, let U ∈ Λ and therefore

Φ,Ψ ∈ H1
0 (0, l),

k

ρ1
(φx + ψ)x −

b11
ρ1

Φ− b12
ρ1

Ψ ∈ L2(0, l),

b

ρ2
ψxx −

k

ρ2
(φx + ψ)− b21

ρ2
Φ− b22

ρ2
Ψ ∈ L2(0, l).

Note that,

k

ρ1
φxx =

(
k

ρ1
(φx + ψ)x −

b11
ρ1

Φ− b12
ρ1

Ψ

)
− k

ρ1
(ψx) +

b11
ρ1

Φ +
b12
ρ1

Ψ,

and this implies that φxx ∈ L2(0, l). Also,

b

ρ2
ψxx =

(
k

ρ2
(φx + ψ)− b21

ρ2
Φ− b22

ρ2
Ψ

)
+
k

ρ2
(φx + ψ) +

b21
ρ2

Φ +
b22
ρ2

Ψ,
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and, thus ψxx ∈ L2(0, l).

Consequently, φ, ψ ∈ H2(0, l) ∩H1
0 (0, l). Therefore, Λ ⊂ D(A).

3.3 EXISTENCE AND UNIQUENESS

This section is focused in showing, the existence and uniqueness of solution for the prob-
lem (3.1)-(3.4). To demonstrate the existence and uniqueness result, we will consider the fol-
lowing condition for the matrix B, which we call damping matrix

B =

[
b11 b12

b21 b22

]
. (3.11)

Condition 01: A real matrix B, as defined in (3.11), satisfies Condition 01 if

b11|z1|2 + (b21 + b12)Re {z1z2}+ b22|z2|2 ≥ 0, ∀ z1, z2 ∈ C. (3.12)

Next, we have some examples of matrices that satisfy the Condition 01.

Example 1. Positively defined matrices satisfy Condition 01. See Definition 2.49, Theorem
2.50 and Lemma 2.51 (Note 13).

Example 2. The identity matrix

I =

[
1 0

0 1

]
.

Note that, b11|z1|2 + (b21 + b12)Re {z1z2}+ b22|z2|2 = |z1|2 + |z2|2 ≥ 0, for all z1, z2 ∈ C.

Example 3. The matrix B given by

B =

[
2 −1

1 3

]
.

Note that, b11|z1|2+(b21+ b12)Re {z1z2}+ b22|z2|2 = 2|z1|2+3|z2|2 ≥ 0. Therefore, Condition
01 is satisfied.

Example 4. The matrix B given by

B =

[
0 0

0 1

]

Note that, b11|z1|2 + (b21 + b12)Re {z1z2} + b22|z2|2 = |z2|2 ≥ 0. Therefore, Condition 01 is
satisfied.
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The main result of this chapter is the following theorem.

Theorem 3.4. Let ρ1, ρ2, b, k > 0. If U0 ∈ D(A), then the Cauchy problem (3.6) admits a

unique solution U ∈ C([0,∞), D(A)) ∩ C1([0,∞),H), under Condition 01.

Proof. By the Theorem 2.44, it is enough to show that the operator A (defined in (3.5)) is
the infinitesimal generator of a contraction C0-semigroup in H. By Lumer-Philips Theorem
(Theorem 2.45), is sufficient showing that

(i) D(A) = H;

(ii) A is dissipative in H, i.e., Re(AU,U)H ≤ 0, for all U ⊂ D(A);

(iii) IH −A : D(A) −→ H is surjective.

We will initially provide the proofs for items (ii) and (iii), leaving the proof of (i) for the final
part.

Proof of (ii).
Let U ∈ D(A) and

AU =


Φ

k
ρ1
(φx + ψ)x − b11

ρ1
Φ− b12

ρ1
Ψ

Ψ
b
ρ2
ψxx − k

ρ2
(φx + ψ)− b21

ρ2
Φ− b22

ρ2
Ψ

 .

By the inner product defined in (3.9), we obtain

(AU,U)H = ρ1

∫ l

0

( k
ρ1

(φx + ψ)x −
b11
ρ1

Φ− b12
ρ1

Ψ
)
Φ dx+ ρ2

∫ l

0

( b
ρ2
ψxx −

k

ρ2
(φx + ψ)

− b21
ρ2

Φ− b22
ρ2

Ψ
)
Ψ dx+ b

∫ l

0

Ψxψx dx+ k

∫ l

0

(Φx +Ψ)(φx + ψ) dx

= k

∫ l

0

(φx + ψ)xΦ dx− b11

∫ l

0

ΦΦ dx− b12

∫ l

0

ΨΦ dx+ b

∫ l

0

ψxxΨ dx

− k

∫ l

0

(φx + ψ)Ψ dx− b21

∫ l

0

ΦΨ dx− b22

∫ l

0

ΨΨ dx+ b

∫ l

0

Ψxψx dx

+ k

∫ l

0

(
Φxφx + Φxψ +Ψφx +Ψψ

)
dx. (3.13)

Integrating by parts the following terms, we find

k

∫ l

0

(φx + ψ)xΦ dx = −k
∫ l

0

(φx + ψ)Φx dx = −k(φx,Φx)2 − k(ψ,Φx)2,

and

−b
∫ l

0

ψxxΨ dx = b

∫ l

0

ψxΨx dx = −b(ψx,Ψx)2.



31

Then, replacing in (3.13)

(AU,U)H = −k(φx,Φx)2 − k(ψ,Φx)2 − b11∥Φ∥22 − b12(Ψ,Φ)2 − b(ψx,Ψx)2

− k(φx,Ψ)2 − k(ψ,Ψ)2 − b21(Φ,Ψ)2 − b22∥Ψ∥22 + b(Ψx, ψx)2

+ k(Φx, φx)2 + k(Φx, ψ)2 + k(Ψ, φx)2 + k(Ψ, ψ)2.

The Condition 01 (3.12) implies

Re(AU,U)H = −b11∥Φ∥22 − Re(b21 + b12)(Ψ,Φ)2 − b22∥Ψ∥22 ≤ 0. (3.14)

Hence, A is dissipative operator.
Proof of (iii). Given F = (f1, f2, f3, f4)

⊤ ∈ H, we will prove that the resolvent equation
(IH − A)U = F has a unique solution U ∈ D(A). Rewriting on terms of its coordinates, we
obtain the following system

φ− Φ = f1 in H1
0 (0, l), (3.15)

Φ− k

ρ1
(φx + ψ)x +

b11
ρ1

Φ +
b12
ρ1

Ψ = f2 in L2(0, l), (3.16)

ψ −Ψ = f3 in H1
0 (0, l), (3.17)

Ψ− b

ρ2
ψxx +

k

ρ2
(φx + ψ) +

b21
ρ2

Φ +
b22
ρ2

Ψ = f4 in L2(0, l). (3.18)

By (3.15), Φ = φ−f1 and by (3.17), Ψ = ψ−f3. Replacing those at (3.16) and (3.18) we have

φ− f1 −
k

ρ1
(φx + ψ)x +

b11
ρ1

(φ− f1) +
b12
ρ1

(ψ − f3) = f2

then

(ρ1 + b11)φ− k(φx + ψ)x + b12ψ = ρ1(f1 + f2) + b11f1 + b12f3.

Also

ψ − f3 −
b

ρ2
ψxx +

k

ρ2
(φx + ψ) +

b21
ρ2

(φ− f1) +
b22
ρ2

(ψ − f3) = f4

and so,

(ρ2 − b22)ψ − bψxx − k(φx + ψ)− b21φ = ρ2(f3 + f4) + b21f1 + b22f3.
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From where we obtain

(ρ1 + b11)φ− k(φx + ψ)x + b12ψ = ρ1(f1 + f2) + b11f1 + b12f3, (3.19)

(ρ2 − b22)ψ − bψxx − k(φx + ψ)− b21φ = ρ2(f3 + f4) + b21f1 + b22f3. (3.20)

Now, defining

g1 ≡ ρ1(f1 + f2) + b11f1 + b12f3, (3.21)

g2 ≡ ρ2(f3 + f4) + b21f1 + b22f3, (3.22)

then, the system (3.19)-(3.20) can be written as

(ρ1 + b11)φ− k(φx + ψ)x + b12ψ = g1, (3.23)

(ρ2 − b22)ψ − bψxx − k(φx + ψ)− b21φ = g2, (3.24)

which we will solve through two stages.
1ststage.
Affirmation: There is a single pair (φ, ψ)∈H1

0 (0, l)×H1
0 (0, l) which satisfies the varia-

tional equation∫ l

0

[(ρ1 + b11)φφ̃+ (ρ2 + b22)ψψ̃ + bψxxψ̃ + k(φx + ψ)(φ̃x + ψ̃) + b12ψψ̃ + b21φφ̃] dx

=

∫ l

0

[g1φ̃+ g2ψ̃] dx. (3.25)

Firstly, we define the following function

a : (H1
0 (0, l)×H1

0 (0, l))
2 −→ C

((φ, ψ), (φ̃, ψ̃)) 7−→ a((φ, ψ), (φ̃, ψ̃)),

where

a((φ, ψ), (φ̃, ψ̃)) =

∫ l

0

[(ρ1 + b11)φφ̃+ (ρ2 + b22)ψψ̃ + bψxxψ̃ + k(φx + ψ)(φ̃x + ψ̃) dx,

and

h : H1
0 (0, l)×H1

0 (0, l) −→ C

(φ̃, ψ̃) 7−→ h(φ̃, ψ̃),
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where

h(φ̃, ψ̃) =

∫ l

0

(
g1φ̃+ g2ψ̃

)
dx.

Thus defined, a is a sesquilinear form, continuous and coercive.

• a is continuous.

Indeed, by using the triangle, Cauchy-Schwarz and Poincaré inequalities, we find

|a((φ, ψ), (φ̃, ψ̃))|

=

∣∣∣∣ ∫ l

0

(
(ρ1 + b11)φφ̃+ (ρ2 + b22)ψψ̃ + bψxψ̃x + k(φx + ψ)(φ̃x + ψ̃)

)
dx

∣∣∣∣
≤ |ρ1 + b11| ∥φ∥2∥φ̃∥2 + |ρ2 + b22| ∥ψ∥2∥ψ̃∥2 + b ∥ψx∥2∥ψ̃x∥2
+ k∥φx + ψ∥2∥φ̃x + ψ̃∥2

≤ |ρ1 + b11|cp∥φx∥2∥φ̃x∥2 + |ρ2 + b22|cp∥ψx∥2∥ψ̃x∥2 + b∥ψx∥2∥ψ̃x∥2
+ k( ∥φx∥2 + cp∥ψx∥2)(∥φ̃x∥2 + cp∥ψ̃x∥2)

= C3

(
∥φx∥2∥φ̃x∥2 + ∥ψx∥2∥ψ̃x∥2 + ∥φx∥2∥ψ̃x∥2 + ∥φ̃x∥2∥ψx∥2

)
≤ C3∥(φ, ψ)∥H1

0×H1
0
∥(φ̃, ψ̃)∥H1

0×H1
0
,

where C3 = max
{
|ρ1 + b11|cp, |p2 + b22|cp, k, b, kcp, kc2p

}
. As established before in Theorem

2.35, we denote cp as the Poincaré constant. Hence, a is continuous.

• a is coercive.

Note that

∥(φ, ψ)∥2H1
0×H1

0
= ∥φx∥22 + ∥ψx∥22
= ∥φx + ψ − ψ∥22 + ∥ψx∥22
≤ ∥φx + ψ∥22 + ∥ψ∥22 + ∥ψx∥22

≤ (ρ1 + b11)∥φ∥22 +
1

k
k∥φx + ψ∥22 +

1

(ρ2 + b22)
(ρ2 + b22)∥ψ∥22

+
1

b
b∥ψx∥22

≤ C4 a((φ, ψ), (φ, ψ)),

where C4 = max

{
1, 1

k
, 1
(ρ2+b22)

, 1
b

}
. Then,

a((φ, ψ), (φ, ψ)) ≥ 1

C4

∥(φ, ψ)∥2H1
0×H1

0
.

Therefore, a is coercive.
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• h is bounded.

Using the Triangle, Poincaré and Cauchy-Schwarz inequalities, we obtain

|h(φ̃, ψ̃)| ≤
∣∣∣∣ ∫ l

0

g1φ̃ dx

∣∣∣∣+ ∣∣∣∣ ∫ l

0

g2ψ̃ dx

∣∣∣∣
≤ cp∥g1∥2∥φ̃x∥2 + cp∥g2∥2∥ψ̃x∥2
≤ C5∥(φ̃, ψ̃)∥H1

0×H1
0
,

where C5 = max{cp∥g1∥2, cp∥g2∥2}. Hence, h is bounded.
Therefore, from the Lax-Milgram Theorem (Theorem 2.14), there is a single pair (φ, ψ) ∈

H1
0 (0, l)×H1

0 (0, l) such that

a((φ, ψ), (φ̃, ψ̃)) = h(φ̃, ψ̃).

2nd stage.
Show that (φ, ψ) ∈ H2(0, l) × H2(0, l) and satisfies (3.23)-(3.24). Indeed. Consider

φ̃ ∈ C1
0(0, l) and ψ̃ = 0, applying in (3.25)

∫ l

0

φxφ̃x dx = −1

k

(∫ l

0

(
(ρ1 + b11)φ+ kψx + b21φ− g1

)
φ̃ dx

)
. (3.26)

As φx, (ρ1+ b21)φ+ b21φ− g1 ∈ L2(0, l) and (3.26) holds, then by the definition of weak
derivatives, φx ∈ H1

0 (0, l), that is, φ ∈ H2(0, l). And still,

kφxx = (ρ1 + b11)φ+ kψx + b21φ− g1 in L2(0, l).

Also, remembering g1 in (3.21) and taking Φ = φ− f1 ∈ H1
0 (0, l), you get

Φ− k

ρ1
(φx + ψ)x +

b11
ρ1

Φ +
b12
ρ1

Ψ = f2.

Therefore, (3.16) is satisfied.
On the other hand, replacing in (3.25) ψ̃ ∈ C1

0(0, l) and φ̃ = 0, we have

∫ l

0

ψxψ̃x dx = −1

b

(∫ l

0

(
(ρ2 + b22)ψ + k(φx + ψ) + b12ψ − g2

)
ψ̃ dx

)
.

Since ψx, (ρ2 + b22)ψ + k(φx + ψ) + b12ψ − g2 ∈ L2(0, l) and (3.22) holds, then by the
definition of weak derivative, ψx ∈ H1(0, l), from where ψ ∈ H2(0, l). And also,

bψxx = (ρ2 + b22)ψ + k(φx + ψ) + b12ψ − g2 in L2(0, l).
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Furthermore, from (3.22) and Ψ = ψ − f3 ∈ H1
0 (0, l), we obtain

Ψ− b

ρ2
ψxx −

k

ρ2
(φx + ψ) +

b21
ρ2

Φ +
b22
ρ2

Ψ = f4 in L2(0, l).

Thus, (3.18) is satisfied.
Proof of (i): We have shown that A is dissipative operator and IH−A is surjective. Then,

H being a Hilbert space and by the Theorems 2.16 and 2.18 it comes that D(A) = H.
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4 EXPONENTIAL STABILITY - B POSITIVE DEFINITE

Throughout this chapter, we will show that the Cauchy problem (3.1)-(3.4) is exponen-
tially stable via Theorem 2.47.

Starting now, the symbol C will denote various positive constants dependent on the pa-
rameters ρ1, ρ2, b, k, cp, and bij , where i, j = 1, 2. If they depend on a specific parameter η, we
denote them as Cη.

Lemma 4.1. Let ρ1, ρ2, b, k > 0 and bij ∈ R. Then, 0 ∈ ρ(A).

Proof. Showing that 0 ∈ ρ(A), by Definition 2.20, is the same as showing that (−A)−1 exists
and is a bounded operator. Given F ∈ H, we will show the resolvent equation

−AU = F, (4.1)

has a unique solution U ∈ D(A). Rewriting in terms of its components, we have

−Φ = f1, (4.2)

−k(φx + ψx) + b11Φ + b12Ψ = ρ1f2, (4.3)

−Ψ = f3, (4.4)

bψxx + k(φx + ψ) + b21Φ + b22Ψ = ρ2f4. (4.5)

It follows from (4.2) and (4.4) that

Φ = −f1 and Ψ = −f3.

Replacing into (4.3) and (4.4), respectively, we have

−k(φx + ψ)x = ρ1f2 + b11f1 + b12f3,

and
bψxx + k(φx + ψ) = ρ2f4 + b21f1 + b22f3.

Now, defining

g3 ≡ ρ1f2 + b11f1 + b12f3,

g4 ≡ ρ2f4 + b21f1 + b22f3.



37

we obtain the following system

−k(φx + ψ)x = g1 in L2(0, l),

bψxx + k(φx + ψ) = g2 in L2(0, l).

Note that, as proven before in Theorem 3.4, the system above has a unique solution. From now
on, we will focus on showing (−A)−1 is bounded, as (−A)−1F = U, it is sufficient to show
that there exists a positive constant C, such that

∥(−A)−1F∥H = ∥U∥H ≤ C∥F∥H.

Note that, using (4.2) and by Poincaré inequality, we have

∥Φ∥22 = ∥f1∥22 ≤ c2p∥f1,x∥22 ≤ c2p(∥f1,x + f3∥2 + ∥f3∥2)2

≤ 2c2p∥f1,x + f3∥22 + 2c4p∥f3,x∥22
≤ C∥F∥H. (4.6)

where C = max
{
2c2p, 2c

4
p

}
. Similarly, from (4.4), we have

∥Ψ∥22 = ∥f3∥22 ≤ c2p∥f3,x∥22 ≤ C∥F∥H. (4.7)

Taking the inner product of (4.3) with φ in L2(0, l), we obtain

−k
∫ l

0

(φx + ψ)xφdx+ b11

∫ l

0

Φφdx+ b12

∫ l

0

Ψφdx = ρ1

∫ l

0

f2, φ dx.

Integrating by parts,

k

∫ l

0

(φx + ψ)φx dx+ b11

∫ l

0

Φφdx+ b12

∫ l

0

Ψφdx = ρ1

∫ l

0

f2φdx.

Also, taking the inner product in L2(0, l) of the resolvent equation (4.5) with ψ, we find

−b
∫ l

0

ψxxψ dx+ k

∫ l

0

(φx + ψ)ψ dx+ b21

∫ l

0

Φψ dx+ b22

∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx. (4.8)

Integrating by parts,

b

∫ l

0

ψxψx dx+ k

∫ l

0

(φx + ψ)ψ dx+ b21

∫ l

0

Φψ dx+ b22

∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx. (4.9)
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Then, adding (4.8) and (4.9), we have

k∥φx + ψ∥22 + b∥ψx∥22 = −b11(Φ, φ)2 − b12(Ψ, φ)2 − b21(Φ, ψ)2

− b22(Ψ, ψ)2 + ρ1(f2, φ)2 + ρ2(f4, ψ)2.

Then, by the Cauchy-Schwarz inequality, we have

k∥φx + ψ∥22 + b∥ψx∥22 ≤ |b11|∥Φ∥2∥φ∥2 + |b12|∥Ψ∥2∥φ∥2 + |b21|∥Φ∥2∥ψ∥2
+ |b22|∥Ψ∥2∥ψ∥2 + ρ2∥f4∥2∥ψ∥2 + ρ1∥f2∥2∥φ∥2.

Also, by Poincaré inequality, we get

k∥φx + ψ∥22 + b∥ψx∥22 ≤ |b11|cp∥Φ∥2∥φx∥2 + |b12|cp∥Ψ∥2∥φx∥2 + |b21|cp∥Φ∥2∥ψx∥2
+|b22|cp∥Ψ∥2∥ψx∥2 + ρ2cp∥f4∥2∥ψx∥2 + ρ1cp∥f2∥2∥φx∥2

≤ |b11|cp∥Φ∥2∥φx + ψ∥2 + |b11|c2p∥Φ∥2∥ψx∥2
+|b12|cp∥Ψ∥2∥φx + ψ∥2 + |b12|c2p∥Ψ∥2∥ψx∥2
+|b21|cp∥Φ∥2∥φx + ψ∥2 + |b21|cp∥Φ∥22∥ψx∥2
+|b22|∥Ψ∥2∥ψx∥2 + ρ2cp∥f4∥2∥ψx∥2
+ρ1cp∥f2∥2∥φx + ψ∥2 + ρ1c

2
p∥f2∥2∥ψx∥2,

where C = max
{
|b11|cp, |b11|c2p, |b12|cp, |b12|c2p, |b21|cp, |b22|, ρ2cp, ρ1cp, ρ1c2p

}
. Using Young

inequality, with ϵ1, ϵ2 > 0, then exists constants Cϵ1 , Cϵ2 > 0, such that

k∥φx + ψ∥22 + b∥ψx∥22 ≤ C∥F∥H∥U∥H + ϵ1∥φx + ψ∥22 + Cϵ1∥Φ∥22 + Cϵ1∥Ψ∥22
+ϵ2∥ψx∥22 + Cϵ2∥Φ∥22 + Cϵ2∥Ψ∥22.

Taking ϵ1 = k
2

and ϵ2 = b
2
, we find from estimates (4.6), (4.7) that

b∥ψx∥22 + k∥φx + ψ∥22 ≤ C∥F∥H∥U∥H, (4.10)

for some C > 0. Therefore, we obtain from estimates (4.6), (4.7) and (4.10)

∥U∥2H ≤ C∥F∥H∥U∥H + C∥F∥2H.

Applying, again, the Young inequality

∥U∥2H ≤ C∥F∥2H.
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Hence, there is C > 0 such that

∥(−A)−1F∥H ≤ C∥F∥H, ∀ F ∈ H.

Therefore, 0 ∈ ρ(A).

Lemma 4.2. Suppose that ρ1, ρ2, b, k > 0 and let B be a positive definite matrix. Then,

iR ⊂ ρ(A).

Proof. From the Theorem 2.41, we obtain that H2(0, l)
c
↪→ H1(0, l)

c
↪→ L2(0, l). Then, it

follows that each space from the Cartesian product in the definition of D(A) has compact em-
bedding on H. Therefore, by Proposition 2.1, ρ(A) is also compact. Furthermore by Propo-
sition 2.2, it follows σ(A) = C \ ρ(A) has only eigenvalues from A. Assuming iR ⊊ ρ(A),
then exists λ ∈ R, such that, iλ /∈ ρ(A) − {0} (Lemma 4.1). Thus, iλ ∈ σ(A), i.e., there is
U = (φ,Φ, ψ,Ψ) ∈ D(A), such that

AU − iλU = 0. (4.11)

Taking the inner product in H of (4.11) by U, we have

0 = (AU − iλU,U)H = (AU,U)H − iλ∥U∥2H.

By taking the real part and considering (3.14), we have the following

0 = Re(AU,U)H = −b11∥Φ∥22 − (b12 + b21)Re(Ψ,Φ)2 − b22∥Ψ∥22.

The above and the fact that B is a positive definite matrix imply, through (2.2) from Lemma
2.51 (Note 13), that Φ = Ψ = 0. On the other hand, rewriting (4.11) in terms of its coordinates

Φ− iλφ = 0, (4.12)
k

ρ1
(φx + ψ)x −

b11
ρ1

Φ− b12
ρ1

Ψ− iλΦ = 0, (4.13)

Ψ− iλψ = 0, (4.14)
b

ρ2
ψxx −

k

ρ2
(φx + ψ)− b21

ρ2
Φ− b22

ρ2
Ψ− iλΨ = 0. (4.15)

Replacing Φ = Ψ = 0 in (4.12) and (4.14) we get φ = ψ = 0. Therefore, U = (0, 0, 0, 0),
which is a contradiction since U ̸= 0 is an eigenvector from A. Hence, it follows that iR ⊂
ρ(A).

Lemma 4.3. Consider ρ1, ρ2, b, k > 0 and let B a positive definite matrix. Then,

lim
|λ|→∞

sup ∥(iλIH −A)−1∥L(H) <∞.



40

Proof. By the previous Lemma, iR ⊂ ρ(A). Therefore, given F ∈ H there is U ∈ D(A), such
that

(iλIH −A)U = F, ∀ λ ∈ R. (4.16)

Let F = (f1, f2, f3, f4)
⊤ ∈ H and U = (φ,Φ, ψ,Ψ)⊤ ∈ D(A) satisfying (4.16), such that,

(iλIH − A)U = F then U = (iλIH − A)−1F. Thereby, in order to show the limit superior
of ∥(iλIH − A)−1∥L(H) is finite when |λ| → ∞, it is sufficient to show that exists a positive
constant C, such that, for all F ∈ H

∥U∥H ≤ C∥F∥H. (4.17)

We have that iλU − AU = F and this implies iλ∥U∥2H − (AU,U)H = (F,U)H. Next, taking
the real part, we obtain

−Re(AU,U)H = Re(F,U)H.

Therefore, from (3.14)

b11∥Φ∥22 + Re(b12 + b21)(Φ,Ψ)2 + b22∥Ψ∥22 ≤ C∥F∥H∥U∥H.

By Lemma 2.51 (Note 13),

∥Φ∥22 + ∥Ψ∥22 ≤ C∥F∥H∥U∥H, (4.18)

Nonetheless, rewriting the resolvent equation (4.16) on terms of its coordinates, we have

iλφ− Φ = f1, (4.19)

iλΦ− k

ρ1
(φx + ψ)x +

b11
ρ1

Φ +
b12
ρ1

Ψ = f2, (4.20)

iλψ −Ψ = f3, (4.21)

iλΨ− b

ρ2
ψxx +

k

ρ2
(φx + ψ) +

b21
ρ2

Φ +
b22
ρ2

Ψ = f4. (4.22)

Taking the inner product in L2(0, l) of the resolvent equation (4.22) with ψ, we obtain

ρ2

∫ l

0

iλΨψ dx− b

∫ l

0

ψxxψ dx+ k

∫ l

0

(φx + ψ)ψ dx+

∫ l

0

(b21Φ + b22Ψ)ψ dx = ρ2

∫ l

0

f4ψ dx.

Using integration by parts and (4.21), we find

b

∫ l

0

|ψx|2 dx = ρ2

∫ l

0

Ψ(Ψ + f3) dx− k

∫ l

0

(φx + ψ)(Ψ + f3) dx

− b21

∫ l

0

Φψ dx− b22

∫ l

0

Ψψ dx+ ρ2

∫ l

0

f4ψ dx.



41

Using Cauchy-Schwarz and Poincaré inequalities, we obtain

b∥ψx∥22 ≤ ρ2∥Ψ∥22 + ρ2∥Ψ∥2∥f3∥2 + k∥φx + ψ∥2∥Ψ∥2 + k∥φx + ψ∥2∥f3∥2
+ |b21|∥Φ∥2∥ψ∥2 + b22∥Ψ∥2∥ψ∥2 + ρ2∥f4∥2∥ψ∥2.

By using (4.18) and Young Ineqaulity

b∥ψx∥22 ≤ ϵ∥ψx∥22 + Cϵ∥F∥H∥U∥H + C∥φx + ψ∥2∥Ψ∥2.

Taking ϵ = b
2
> 0, there exists C > 0, such that

b∥ψx∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2. (4.23)

Now, taking the inner product in L2(0, l) of the resolvent equation (4.20) with φ, we get

ρ1

∫ l

0

iλΦφdx− k

∫ l

0

(φx + ψ)xφdx+ b11

∫ l

0

Φφdx+ b12

∫ l

0

Ψφdx = ρ1

∫ l

0

f2φdx.

Using integration by parts and (4.19)

k

∫ l

0

|φx + ψ| dx = ρ1

∫ l

0

Φ(Φ + f1) dx+ k

∫ l

0

(φx + ψ)ψ dx

− b11

∫ l

0

Φφdx− b12

∫ l

0

Ψφdx+ ρ1

∫ l

0

f2φdx.

Using Cauchy-Schwarz and Hölder inequalities, we get

k∥φx + ψ∥22 ≤ ρ1∥Φ∥22 + ρ1∥Φ∥2∥f1∥2 + k∥φx + ψ∥2∥ψ∥2
+ b11∥Φ∥2∥U∥H + |b12|∥Ψ∥2∥U∥H + ρ1∥φ∥2∥f2∥2.

Using the Young and Poincaré inequalities

k∥φx + ψ∥22 ≤ C∥Φ∥22 + ϵ∥φx + ψ∥22 + Cϵ∥ψx∥22 + C∥Φ∥2∥U∥H
+ C∥Ψ∥2∥U∥H + C∥F∥H∥U∥H.

Taking ϵ = k
2
> 0 there exists C > 0, such that

k∥φx + ψ∥22 ≤ C∥ψx∥22 + C∥Φ∥2∥U∥H + C∥Ψ∥2∥U∥H + C∥F∥H∥U∥H. (4.24)
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Finally, from (4.18), (4.23) and (4.24), we arrive at

∥U∥2H = ρ1∥Φ∥22 + ρ2∥Ψ∥22 + b∥φx∥22 + k∥φx + ψ∥22
≤ C∥F∥H∥U∥H
≤ ϵ∥U∥2H + Cϵ∥F∥2H.

Therefore, for ϵ < 1, we find (4.17). The proof is complete.

Theorem 4.4. Let ρ1, ρ2, k, b > 0. The Timoshenko system (3.1)-(3.4) is exponentially stable if

the damping matrix

B =

[
b11 b12

b21 b22

]

is a positive definite matrix.

Proof. Through the Lemmas 4.1, 4.2 and 4.3, we conclude the proof of Theorem 4.4 by Theo-
rem 2.47. Consequently, the Timoshenko system is exponentially stable.
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5 EXPONENTIAL STABILITY - A PARTICULAR CASE OFB NON-POSITIVE DEF-
INITE

5.1 THE PROBLEM

Here, we study the exponential stability for the following Timoshenko system

ρ1φtt − k(φx + ψ)x = 0 in (0, l)× (0,∞), (5.1)

ρ2ψtt − bψxx + k(φx + ψ) + ψt = 0 in (0, l)× (0,∞), (5.2)

with initial conditions

φ(·, 0) = φ0(·), φt(·, 0) = φ1(·), ψ(·, 0) = ψ0(·), ψt(·, 0) = ψ1(·), (5.3)

and Dirichlet boundary conditions

φ(0, t) = φ(l, t) = ψ(0, t) = ψ(l, t) = 0, t ≥ 0. (5.4)

5.2 EXISTENCE AND UNIQUENESS

Before presenting the existence and uniqueness result, let us compile some information
from Chapter 3.

1. The problem (5.1)- (5.4) can be expressed abstractly as the following Cauchy problem

Ut = AU, t > 0,

U(0) = U0,
(5.5)

with A : D(A) ⊂ H → H defined in (3.5) with specific coefficients b11 = b12 = b21 = 0

and b22 = 1. The phase space H is described in (3.7), and the domain of the operator A is
established by Proposition 3.1.

2. The existence and uniqueness result can also be derived from Theorem 3.4 in this
scenario, where the matrix B satisfies Condition 01 as given in (3.12) (see Example 4, Section
3.3). Specifically, we obtain the following result.

Theorem 5.1 (Existence and Uniqueness). If U0∈D(A), then the Cauchy Problem (5.5) has a

unique solution U ∈ C([0,∞), D(A)) ∩ C1([0,∞),H).

5.3 EXPONENTIAL STABILITY FOR EQUAL WAVE SPEEDS

From now on, we will study the exponential stability of the system (5.1)-(5.4) using Prüss
Theorem (Theorem 2.47). In order to keep up with our proof, we shall define the resolvent
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equation for the system (5.1)-(5.2). The resolvent equation is given by

iλU −AU = F. (5.6)

Also, rewriting (5.6) in terms of coordinates we have:

iλφ− Φ = f1, (5.7)

iλΦ− k

ρ1
(φx + ψ)x = f2, (5.8)

iλψ −Ψ = f3, (5.9)

iλΨ− b

ρ2
ψxx +

k

ρ2
(φx + ψ) +

Ψ

ρ2
= f4. (5.10)

Lemma 5.2. Let ρ1, ρ2, b, k > 0. Then, 0 ∈ ρ(A).

Proof. To demonstrate that 0 ∈ ρ(A) it is sufficient to show that (−A)−1 exists and it is
bounded. Given F ∈ H, we will show that

−AU = F (5.11)

has a unique solution U ∈ D(A). Rewriting (5.11) in terms of its components, we have

−Φ = f1, (5.12)

−k(φx + ψ)x = ρ1f2, (5.13)

−Ψ = f3, (5.14)

−bψxx + k(φx + ψ)−Ψ = ρ2f4. (5.15)

From (5.14), Ψ = −f3. Replacing in (5.15) we find

−bψxx + k(φx + ψ) = ρ2f4 − f3.

Now, defining

g1 ≡ ρ1f2,

g2 ≡ ρ2f4 − f3,

we obtain the following system

−k(φx + ψ)x = g1,

−bψxx + k(φx + ψ) = g2,

which has a solution, as we can see in Theorem 3.4. Therefore, (−A)−1 exists. Now, we shall
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demonstrate that −A−1 is bounded, to this end we just need to show that there exists a positive
constant C, such that

∥U∥H ≤ C∥F∥H.

Using (5.7) and by Poincaré inequality, we get

∥Φ∥22 = ∥f1∥22 ≤ c2p∥f1,x∥22 ≤ c2p(∥f1,x + f3∥2 + ∥f3∥2)2

≤ 2c2p∥f1,x + f3∥22 + 2c4p∥f3,x∥22
≤ C∥F∥H.

Similarly, from (5.9), we have

∥Ψ∥22 = ∥f3∥22 ≤ c2p∥f3,x∥22 ≤ C∥F∥H.

Taking the inner product of (5.13) with φ in L2(0, l), we have

−k
∫ l

0

(φx + ψ)xφdx = ρ1

∫ l

0

f2φdx,

integrating by parts

k

∫ l

0

(φx + ψ)(φx + ψ) dx− k

∫ l

0

(φx + ψ)ψ dx = ρ1

∫ l

0

f2φdx

from where we get
k∥φx + ψ∥22 − k(φx + ψ, ψ)2 = ρ1(f2, φ)2. (5.16)

Also, taking the inner product of (5.15) with ψ in L2(0, l), we have

−b
∫ l

0

ψxxψ dx+ k

∫ l

0

(φx + ψ)ψ dx−
∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx,

integrating by parts

b

∫ l

0

ψxψx dx+ k

∫ l

0

(φx + ψ)ψ dx−
∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx,

then
b∥φx∥22 + k(φx + ψ, ψ)2 − (Ψ, ψ)2 = ρ2(f4, ψ)2. (5.17)

Adding (5.16) and (5.17) we have

k∥φx + ψ∥22 + b∥φx∥22 = (Ψ, ψ)2 + ρ1(f2, φ)2 + ρ2(f4, ψ)2.
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Using Cauchy-Schwarz and Poincaré inequalities

k∥φx + ψ∥22 + b∥φx∥22
≤ cpρ1∥f2∥2∥φx∥2 + cpρ2∥f4∥2∥ψx∥2 + cp∥Ψ∥2∥ψx∥2
≤ cpρ1∥f2∥2

(
∥φx + ψ∥2 + ∥ψ∥2

)
+ cpρ2∥f4∥2∥ψx∥2 + cp∥Ψ∥2∥ψx∥2

≤ cpρ1∥f1∥2∥φx + ψ∥2 + c2pρ1∥f1∥2∥ψx∥2 + cpρ2∥f4∥2∥ψx∥2 + cp∥Ψ∥2∥ψx∥2
≤ C∥F∥H∥U∥H + C∥Ψ∥2∥U∥2,

for some C > 0. Applying the Young inequality, yields

∥U∥H ≤ C∥F∥2H.

Hence, there is C > 0 such that

∥(−A)−1F∥H ≤ C∥F∥H, ∀ F ∈ H.

Hence, the proof is complete.

Lemma 5.3. Suppose ρ1, ρ2, b, k > 0. Then, iR ⊂ ρ(A).

Proof. By Theorem 2.41, it follows thatD(A)
c
↪→ H. By the Proposition 2.2, σ(A) = C\ρ(A)

has only eigenvectors of A. If we assume that iR ⊊ ρ(A) then exists iλ /∈ ρ(A)−{0} (Lemma
5.2). Thus, iλ ∈ σ(A), i.e., exists U = (φ,Φ, ψ,Ψ)⊤ ̸= 0, such that

iλU −AU = 0. (5.18)

Taking the inner product of (5.18), we obtain

0 = Re
{
iλ∥U∥22 − (AU,U)H

}
= −Re(AU,U) = ∥Ψ∥22.

Therefore, Ψ = 0. Replacing Ψ = 0 into (5.9) (with F = (0, 0, 0, 0)), we have that, ψ = 0 and,
from (5.10) (also with F = (0, 0, 0, 0)) we have φ = 0 and from where we get, in (5.7), Φ = 0.
Therefore U = (0, 0, 0, 0) which is an contraction, because U is an eigenvector of A. Hence,
iR ⊂ ρ(A).

Lemma 5.4. Let ρ1, ρ2, b, k > 0. Then,

∥Ψ∥22 ≤ ∥F∥H∥U∥H.

Proof. Taking the inner product of equation (5.6) with U, we find

Re(F,U)H = Re
{
iλ∥U∥22 − (AU,U)H

}
= −Re(AU,U) = ∥Ψ∥22.
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The conclusion follows from Cauchy-Schwarz inequality.

Lemma 5.5. Let ρ1, ρ2, b, k > 0. There is C > 0 such that

b∥ψx∥22 ≤ C∥U∥H∥F∥H.

Proof. Taking the inner product in L2(0, l) of the equation (5.10) with ψ, we have

iλρ2

∫ l

0

Ψψ dx− b

∫ l

0

ψxxψ dx+ k

∫ l

0

(φx + ψ)ψ dx+

∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx.

Using (5.9)

−ρ2
∫ l

0

Ψ(Ψ + f3) dx− b∥ψx∥22 −
k

iλ

∫ l

0

(φx + ψ)(Ψ + f3) dx+

∫ l

0

Ψψ dx = ρ2

∫ l

0

f4ψ dx.

Using Cauchy-Schwarz, Poincaré and Young inequalities, we have

b∥ψx∥22 ≤ ρ2∥Ψ∥2
(
∥Ψ∥2 + ∥f3∥2

)
+
k

|λ|
∥φx + ψ∥2

(
∥Ψ∥2 + ∥f3∥2

)
+C∥ψ∥2

(
∥Ψ∥2 + ∥f4∥2

)
.

Therefore,

b∥ψx∥22 ≤ C∥U∥H∥Ψ∥2 + C∥U∥H∥F∥H.

Using Lemma 5.4
b∥ψx∥22 ≤ C∥U∥H∥F∥H.

Hence, the proof is complete.

Lemma 5.6. Let ρ1, ρ2, b, k > 0 and k
b
= ρ1

ρ2
. Then, there is C > 0 such that

k∥φx + ψ∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 − Re

{
bφxψx

∣∣∣∣∣
x=l

x=0

}
.

Proof. Now, taking the inner product of (5.10) with (φx + ψ)

k∥φx + ψ∥22 = −iλρ2
∫ l

0

Ψ(φx + ψ) dx + b

∫ l

0

ψxx(φx + ψ) dx︸ ︷︷ ︸
:=R1

−
∫ l

0

Ψφx dx−
∫ l

0

Ψψ dx+ ρ2

∫ l

0

f4(φx + ψ) dx. (5.19)

Integrating R1 by parts

b

∫ l

0

ψxx(φx + ψ) dx = b(φx + ψ)ψx

∣∣∣∣∣
x=l

x=0

− b

∫ l

0

ψx(φx + ψ)x dx. (5.20)
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Replacing (5.7), (5.9) and (5.20) into (5.19), we have

k∥φx + ψ∥22 = ρ2

∫ l

0

ΨΦx dx+ ρ2

∫ l

0

Ψf1,x dx+ ρ2∥Ψ∥22 + ρ2

∫ l

0

Ψf3 dx

+b(φx + ψ)ψx

∣∣∣∣∣
x=l

x=0

− b

∫ l

0

ψx(φx + ψ)x dx︸ ︷︷ ︸
:=R2

−
∫ l

0

Ψφx dx

−
∫ l

0

Ψψ dx+ ρ2

∫ l

0

f4(φx + ψ) dx. (5.21)

Now, replacing (φx + ψ)x given on (5.8) at R2, we obtain

−b
∫ l

0

ψx(φx + ψ)x dx = −bρ1
k

∫ l

0

ψx(iλρ1Φ− f2) dx

= −iλbρ1
k

∫ l

0

ψΦx dx+
bρ1
k

∫ l

0

ψxf2 dx.

Replacing, again, ψ given on (5.9)

−iλbρ1
k

∫ l

0

ψΦx dx+
bρ1
k

∫ l

0

ψxf2 dx = −bρ1
k

∫ l

0

(Ψ + f3)Φx dx+
bρ1
k

∫ l

0

ψxf2 dx.

Returning to (5.21) we get

k∥φx + ψ∥22 =

(
ρ2 −

bρ1
k

)∫ l

0

ΨΦx dx+ ρ2

∫ l

0

Ψf1,x dx+ ρ2∥Ψ∥22 + ρ2

∫ l

0

Ψf3 dx

+ b(φx + ψ)ψx

∣∣∣∣∣
x=l

x=0

+
bρ1
k

∫ l

0

f3,xΦ dx +
bρ1
k

∫ l

0

ψxf2 dx

−
∫ l

0

Ψφx dx−
∫ l

0

Ψψ dx+ ρ2

∫ l

0

f4φx dx+ ρ2

∫ l

0

f4ψ dx.

Note that, from the hypothesis, it follows that

ρ1
ρ2

− k

b
if and only if ρ2 =

bρ1
k
.

Then, (
ρ2 −

bρ1
k

)∫ l

0

ΨΦx dx = 0.
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Therefore, by the Cauchy-Schwarz Ineqaulity, we have

k∥φx + ψ∥22 ≤ ρ2∥Ψ∥2∥f1,x∥2 + ρ2∥Ψ∥22 + ρ2∥Ψ∥2∥f3∥2 +
bρ1
k

∥f3,x∥2∥Φ∥2

+
bρ1
k

∥ψx∥2∥f2∥2 + ∥Ψ∥2∥φx + ψ∥2 + ρ2∥f4∥2∥φx + ψ∥2

+Re

b(φx + ψ)ψx

∣∣∣∣∣
x=l

x=0

 .

The above implies that

k∥φx + ψ∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + Re

bφxψx

∣∣∣∣∣
x=l

x=0

 ,

which concludes the proof.

Lemma 5.7. Let ρ1, ρ2, b, k > 0, bij ∈ R and ξ ∈ C1([0, l]), such that, ξ(0) = −ξ(l) = 1.

There is C > 0 such that

(i)

− b
2
ξ(x)|ψx|2

∣∣∣∣∣
x=l

x=0

≤ C∥U∥H∥F∥H + C∥Ψ∥2∥U∥H + C∥ψx∥22 + C∥φx + ψ∥2∥ψx∥2.

(ii)

−k
2
ξ(x)|φx|2

∣∣∣∣∣
x=l

x=0

≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥U∥22.

Proof. Proof of (i). Taking the inner product of (5.10) by ξψx in L2(0, l), we deduce

ρ2iλ

∫ l

0

ξΨψx dx︸ ︷︷ ︸
:=R3

−b
∫ l

0

ξψxxψxdx︸ ︷︷ ︸
:=R4

+k

∫ l

0

ξ(φx+ψ)ψxdx+

∫ l

0

Ψψxξdx = ρ2

∫ l

0

ξf4ψxdx. (5.22)

Replacing ψ given by (5.9) in R3, we obtain

Re{R3} = Re
{
−ρ2

∫ l

0

ξΨΨx dx− ρ2

∫ l

0

ξΨf3,x dx

}
= Re

{
−ρ2
2

∫ l

0

ξ
d

dx
|Ψ|2 dx− ρ2

∫ l

0

ξΨf3,x dx

}
=
ρ2
2

∫ l

0

ξ′|Ψ|2 dx− Re
{
ρ2

∫ l

0

ξΨf3,x dx

}
.
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Integrating by parts, we have

Re{R4} = −Re
{
b

2

∫ l

0

ξ
d

dx
|ψx|2 dx

}
= − b

2
ξ(x)|ψx|2

∣∣∣∣∣
x=l

x=0

+
b

2

∫ l

0

ξ′|ψx|2 dx.

Replacing in (5.22), we get

− b
2
ξ(x)|ψx|2

∣∣∣∣∣
x=l

x=0

= Re
{
ρ2

∫ l

0

ξf4ψx dx +
ρ2
2

∫ l

0

ξ′|Ψ|2 dx + ρ2

∫ l

0

ξΨf3,x dx

}
− Re

{
b

2

∫ l

0

ξ′|ψx|2 dx+ k

∫ l

0

ξ(φx + ψ)ψx dx+

∫ l

0

ξΨψx dx

}
.

(5.23)

We shall estimate the right-hand side of equation (5.23). Here, we handle the first integral, and
the other we use the same argument. By Hölder inequality, we find

Re
{
ρ2

∫ l

0

ξf4ψx dx

}
=

∣∣∣∣∣ρ2
∫ l

0

ξf4ψx dx

∣∣∣∣∣
≤ ρ2∥ξ∥∥f4∥2∥ψx∥2
≤ C∥U∥H∥F∥H.

where ∥ξ∥ = sup{ξ(x)|x ∈ [0, l]}. Therefore

−b
2

2
ξ(x)|ψx|2

∣∣∣∣∣
x=l

x=0

≤ C∥U∥H∥F∥H + C∥Ψ∥2∥U∥H + C∥ψx∥22 + C∥φx + ψ∥2∥ψx∥2.

This concludes the proof of (i).
Proof of (ii).Taking the inner product of (5.8) by ξφx in L2(0, l), we obtain

ρ1iλ

∫ l

0

ξΦφx dx− k

∫ l

0

ξ(φx + ψ)xφx dx = ρ1

∫ l

0

ξf2φx dx.

Replacing φ given by (5.7)

− ρ1

∫ l

0

ξΦf1,x dx−ρ1
∫ l

0

ξΦΦx dx︸ ︷︷ ︸
:=R5

−k
∫ l

0

ξφxxφx dx︸ ︷︷ ︸
:=R6

−k
∫ l

0

ξψxφx dx = ρ1

∫ l

0

ξf2φx dx.

(5.24)
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Furthermore, integrating by parts, we obtain

Re{R5} = −Re
{
ρ1
2

∫ l

0

ξ
d

dx
|Φ|2 dx

}
=
ρ1
2

∫ l

0

ξ′|Φ|2 dx

and

Re{R6} = −Re
{
k

2

∫ l

0

ξ(x)
d

dx
|φx|2 dx

}
= −k

2
ξ(x)|φx|2

∣∣∣∣∣
x=l

x=0

+
k

2

∫ l

0

ξ|φx|2 dx.

Replacing in (5.24), we get

−k
2
ξ(x)|φx|2

∣∣∣∣∣
x=l

x=0

= Re
{
ρ1

∫ l

0

ξf2φx dx+ ρ1

∫ l

0

ξΦf1,x dx− ρ1

∫ l

0

ξ′|Φ|2 dx
}

+Re
{
−k
2

∫ l

0

ξ′|φx|2 dx+ k

∫ l

0

ξψxφx dx

}
. (5.25)

By Hölder, triangle and Poincaré inequalities, we have

Re
{
−k
2

∫ l

0

ξ|φx|2 dx
}

≤ k

2

∫ l

0

|ξ||φx|2 dx

≤ k

2

∫ l

0

|ξ||φx + ψ|2 dx+ k

2

∫ l

0

|ξ||ψ|2 dx

≤ C∥φx + ψ∥22 + C∥ψx∥22
≤ C∥U∥2H.

Furthermore,

Re
{
k

∫ l

0

ξψxφx dx

}
≤ k

∫ l

0

|ξ||ψx||φx| dx

≤ k

∫ l

0

|ξ||ψx||φx + ψ| dx+ k

∫ l

0

|ξ||ψx||ψ| dx

≤ C∥ψx∥2∥φx + ψ∥2 + C∥ψx∥22
≤ C∥U∥2H.

Replacing in (5.25), we have

−k
2
ξ(x)|φx|2

∣∣∣∣∣
x=l

x=0

≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥U∥22.
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The proof is complete.

Corollary 5.1. Let ρ1, ρ2, b, k > 0 and k
b
= ρ1

ρ2
. Then, there is C > 0 such that

k∥φx + ψ∥22 ≤ ϵ∥U∥22 + Cϵ∥U∥H∥F∥H + Cϵ∥U∥H∥Ψ∥2 + Cϵ∥φx + ψ∥2∥ψx∥2 + Cϵ∥ψx∥22.

Proof. Using Young inequality

Re

bφxψx

∣∣∣∣∣
x=l

x=0

 ≤ ϵ

(
ξ(x)|φx|2

)∣∣∣∣∣
x=l

x=0

+ Cϵ

(
ξ(x)|ψx|2

)∣∣∣∣∣
x=l

x=0

.

The conclusion follows from Lemma 5.6 and 5.7 with ξ(x) = −2x
l
+ 1.

Lemma 5.8. Let ρ1, ρ2, b, k > 0. There is C > 0 such that

ρ1∥Φ∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥φx + ψ∥22 + C∥ψx∥22.

Proof. Taking the inner product of (5.8) with φ in L2(0, l), we obtain

iλρ1

∫ l

0

Φφ dx− k

∫ l

0

(φx + ψ)xφ dx = ρ1

∫ l

0

f2φ dx.

Replacing φ given by (5.7), we have

ρ1∥Φ∥22 = −k
∫ l

0

(φx + ψ)xφ dx− ρ1

∫ l

0

Φf1 dx− ρ1

∫ l

0

f2φ dx.

Note that, applying the Cauchy-Schwarz, triangle and Poincaré inequalities, we obtain∣∣∣∣∣k
∫ l

0

(φx + ψ)xφ dx

∣∣∣∣∣ =

∣∣∣∣∣k
∫ l

0

(φx + ψ)φx dx

∣∣∣∣∣
=

∣∣∣∣∣k
∫ l

0

(φx + ψ)2 dx+ k

∫ l

0

(φx + ψ)ψ dx

∣∣∣∣∣
≤ k∥φx + ψ∥22 − k∥φx + ψ∥2∥ψ∥2
≤ C∥φx + ψ∥22 + C∥ψx∥22.

Therefore

ρ1∥Φ∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥φx + ψ∥22 + C∥ψx∥22.

Which completes the proof.
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Lemma 5.9. Consider ρ1, ρ2, b, k > 0 and k
b
= ρ1

ρ2
. Then,

lim sup
|λ|→∞

∥(iλIH −A)−1∥L(H) <∞. (5.26)

Proof. Once iR ⊂ ρ(A), given F ∈ H, there is a unique U ∈ D(A) such that

(iλIH −A)U = F, ∀λ ∈ R,

then
U = (iλIH −A)−1.

In order to show that (5.26), we just need to demonstrate that there is a constant C > 0, such
that, for all F ∈ H

∥U∥H ≤ C∥F∥H.

Using Lemma 5.8, we find

ρ1∥Φ∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥φx + ψ∥22 + C∥ψx∥22.

Also adding k∥φx + ψ∥22 to the inequality above and by Corollary 5.1, we get

ρ1∥Φ∥22 + k∥φx + ψ∥22 ≤ ϵ∥U∥22 + Cϵ∥U∥H∥F∥H + Cϵ∥U∥H∥Ψ∥2
+ Cϵ∥φx + ψ∥2∥ψx∥2 + Cϵ∥ψx∥22. (5.27)

Now, adding ρ2∥Ψ∥22 and b∥ψx∥22 into the inequality (5.27), we obtain

∥U∥22 ≤ ϵ∥U∥22 + Cϵ∥U∥H∥F∥H + Cϵ∥U∥H∥Ψ∥2 + Cϵ∥U∥H∥ψx∥2 + Cϵ∥ψx∥22. (5.28)

Taking ϵ = 1
2

in (5.28), we obtain

∥U∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥U∥H∥ψx∥2 + C∥ψx∥22. (5.29)

Using Young inequality in (5.29)

∥U∥22 ≤ ϵ∥U∥22 + Cϵ∥Ψ∥22 + Cϵ∥ψx∥22 + Cϵ∥F∥2H. (5.30)

Taking ϵ = 1
2

in (5.30), we find

∥U∥22 ≤ C∥Ψ∥22 + C∥ψx∥22 + C∥F∥2H.
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Using Lemma 5.4, we have that

∥U∥22 ≤ C∥U∥H∥F∥H + C∥U∥H∥Ψ∥2 + C∥F∥2H. (5.31)

Using Young inequality in (5.31)

∥U∥22 ≤ ϵ∥U∥2H + Cϵ∥Ψ∥22 + Cϵ∥F∥2H. (5.32)

Taking ϵ = 1
2

in (5.32) and using Lemma 5.5, we find

∥U∥22 ≤ C∥U∥H∥F∥H + C∥F∥2H. (5.33)

Again, Using Young inequality in (5.33) with ϵ = 1
2
, we find

∥U∥22 ≤
1

2
∥U∥2H + C∥F∥2H.

Therefore

∥U∥H ≤ C∥F∥H.

Hence, the proof is complete.

Theorem 5.10. Let ρ1, ρ2, k, b > 0. The Timoshenko system, given by (5.1)-(5.4) is exponen-

tially stable if

k

b
=
ρ1
ρ2
.

Proof. Through Lemmas 5.2, 5.3, 5.9 we can conclude the proof of Theorem 5.10 by Theorem
2.47. Consequently, the Timoshenko system (5.1)-(5.4) is exponentially stable.
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6 CONCLUSION

In this work, the Timoshenko System was approached in order to extend the findings of
[12], motivated by [3], with an specific condition for the damping matrix B, which must be
positive definite.

In Chapter 3, we focused on formulating the problem and constructing the semigroup,
from where we were able to rigorously establish the system’s well-posedness.

Moving forward to chapter 4, our analysis demonstrated the system’s exponential stability,
particularly when considering the damping matrix B as a positive definite matrix. This finding
underscores the importance of proper damping considerations.

Lastly, in Chapter 5, we have studied a particular case of a Timoshenko System, where
we investigates a scenario with a constant damping parameter b22 = 1. Despite the absence
of B’s positive definiteness, our analysis revealed that stability can still be maintained under
certain conditions, showcasing the nuanced interplay between damping parameters and system
stability.

In essence, this dissertation contributes to the body of knowledge surrounding the Timo-
shenko system by providing a comprehensive examination of the role of matrices, well-posedness,
and stability considerations. By extending the findings of prior research and unveiling new in-
sights, this work advances our understanding of dynamic systems and lays the groundwork for
future explorations in this field.
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