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SANTOS, Weslley. Correspondência Bulk-Edge em Teorias de Chern-Simons
Supersimétricas. 2020. Dissertação de Mestrado (Mestrado em Física) – Universidade
Estadual de Londrina, Londrina, 2020.

Resumo
Teorias topológicas de Chern-Simons em 2+1 dimensões espaço-temporais, possuem
uma série de propriedades peculiares que, além de seu interesse intrínseco como uma
teoria quântica dos campos, possuem desdobramentos importantes em física da matéria
condensada e em matemática. Uma das características mais notáveis é a chamada holografia,
em que os graus de liberdade físicos residem somente nas bordas da variedade sobre a qual a
teoria é definida. Isso proporciona uma relação entre a física do interior e a física da borda,
denominada correspondência bulk-edge. O objetivo principal é investigar a correspondência
bulk-edge em teorias de Chern-Simons abeliana com vínculo de supersimetria N = 1 e
N = 2.

Palavras-chave: Correspondência Bulk-Edge. Chern-Simons. Supersimetria.





SANTOS, Weslley. Bulk-Edge Correspondence in Supersymmetric Chern-Simons
Theories. 2020. Senior Thesis (Master of Science in Physics) – Universidade Estadual de
Londrina, Londrina, 2020.

Abstract
The Chern-Simons theory has many peculiar properties. In addition to their intrinsic
interest as a quantum field theory, it has important developments in condensed matter
physics and mathematics. One of the most notable features is called holography, where
physical degrees of freedom resides only at the edges of the manifold upon which the
theory is defined. This provides a relation between interior physics and edge physics, called
bulk-edge correspondence. The main goal of this work is to investigate the bulk-edge
correspondence in N = 1 and N = 2 supersymmetric Chern-Simons theories.

Keywords: Bulk-Edge Correspondence. Supersymmetry. Chern-Simons.
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1 Introduction

Quantum field theories in 2+1 space-time dimensions present peculiar properties
that do not have a counterpart in higher dimensions. For example, besides bosons and
fermions, there are also particles with arbitrary charge and statistic, called anyons. These
particles appear as emergent particles in strongly coupled quantum matter systems. In
general, such systems can not be distinguished by their symmetries, and so can not be
described by the Landau-Ginzburg theory [1, 2]. Rather, this new kind of phase, known
as topological phases, can be classified according to its topological properties, such as the
ground state degeneracy and gapless edge excitations [3, 4, 5, 6, 7].

The characterization of topological phases was first approached from a microscopic
point of view, focusing on the electron wavefunction [8]. Subsequent approaches relied
on effective low-energy theories to describe their topological properties. The Abelian
Quantum Hall states, for example, can be described by an effective Abelian Chern-Simons
theory [4, 9]. Such theories have many interesting properties and, in addition to their
role in topological phases of matter, arouse interest from a purely theoretical point of
view [10, 11, 12, 13]. Among its main properties, one of the most striking is the so-called
holography, which arises on bordered manifolds. In the presence of physical boundaries,
the gauge symmetry is broken. So, when one restores the symmetry, chiral dynamical
excitations emerge at the edge of the manifolds. This provides a relation between bulk
and edge physics, called bulk-edge correspondence. Once different bulk structures lead to
different structures of edge excitations, we can obtain information about bulk topological
properties through edge excitations, providing thus a characterization of such phases [9].

The goal of this work is to study the relation between bulk and edge physics in
Abelian Chern-Simons theories subjects to supersymmetry constraints. Since supersym-
metry algebra involves space-time translations, on manifolds with physical boundaries
both translational symmetry and supersymmetry in general are broken. To restore the
supersymmetry, one adds edge contributions to compensates bulk variations [14, 15, 16].
In such cases, dynamical excitations also may arise at the boundary. Our goal is to study
the bulk-edge correspondence in N = 1 and N = 2 supersymmetric Abelian Chern-Simons
theories. The advantage of this approach is that the edge states emerge more naturally
than in the case of bulk-edge correspondence based on gauge invariance restoration. Thus,
motivated by the context of gauge symmetry, we would like to investigate whether such
theories can also be useful to describe topological phases of matter.

Moreover, there are several reasons to consider supersymmetric theories. One of the
most important reason is the cancellation of divergences in loop corrections. In addition,
supersymmetric models are generally easier to solve than non-supersymmetric ones since
they are more constrained by the higher degree of symmetry. Thus, they can serve as toy
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models to find certain analytical results that may be useful for qualitative descriptions of
realistic theories [17, 18, 19, 20].

The work is organized as follows. In Chapter 2 and 3 we will discuss the main
properties of pure Chern-Simons theory, the couplings to matter fields, both in Abelian and
non-Abelian cases, as well as the bulk-edge correspondence. In Chapter 4 we will discuss
the basics of supersymmetry through the construction of some supersymmetric models.
Finally, in Chapter 5 we will discuss N = 1 and N = 2 supersymmetry with boundaries,
focusing on the edge theories that arise from the Abelian Chern-Simons theory. For
simplicity, we will use h̄ ≡ c ≡ 1 and the Minkowski metric ηµν = (+,−,−), exceptionally
in the Chapter 5 we will use the metric ηµν = (−,+,+). Latin indices i, j, · · · assigned
to coordinates run only over spatial dimensions while Greek indices µ, ν, ... run over both
space and time dimensions.
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2 Abelian Chern-Simons Theory

In this chapter, we will review some properties of pure Abelian Chern-Simons
theory, such as the quantization of the level κ, the ground state degeneracy and the
discrete symmetry operations. We will also introduce the basic features of anyons and
topologically massive gauge theory. Finally, we will discuss the bulk-edge correspondence.

2.1 Discrete Symmetries
In 2+1 space-time dimensions, the existence of the Levi-Civita symbol εµνρ allows

us to construct a new theory that is local, and both Lorentz and gauge-invariant, the
Chern-Simons theory,

S =
κ

4π

∫
d3xεµνρAµ∂νAρ, (2.1)

where the dimensionless coefficient κ is called the Chern-Simons level. Such theory breaks
both parity P and time-reversal T symmetries. In 2+1 dimensions, the parity operation is
defined as the reflection of only one spatial coordinate, while the time-reversal operation
is defined in the usual way,

P : x0 → x0, x1 → −x1, x2 → x2 and T : x0 → −x0, ~x→ ~x.

The Maxwell equations must be invariant under such operations. This requirement is
fulfilled if the gauge field components transform as

P : A0 → A0, A1 → −A1, A2 → A2 and T : A0 → A0, ~A→ − ~A,

which means that the Chern-Simons theory is odd under both operations. These properties
tell us that the Chern-Simons theory can describe physical systems whose parity and time
reversal are broken.

2.2 Quantization of the level κ
At first, the Chern-Simons theory does not look gauge invariant, because it depends

explicitly on Aµ. However, under a gauge transformation,

Aµ → Aµ + ∂µΛ, (2.2)

the action changes by a total derivative

S → S +
κ

4π

∫
d3x∂µ(Λεµνρ∂νAρ). (2.3)
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Thus, by choosing appropriate boundary conditions, we can neglect the total derivative and
the theory will be gauge invariant as long as Λ is single-valued. However, this restriction
on Λ leads to inconsistencies in the theory. To see this, recall that there are two kinds of
U(1) gauge theory, called compact and non-compact theories. The non-compact theory is
also called R gauge theory to highlight its non-compactness [1, 11].

In R gauge theories, the gauge transformations (2.2) are restrict to those whose
Λ is a single-valued function. As a consequence, the electric charges are not quantized
and there are no magnetic monopoles. However, it is an experimental fact that electric
charges have only integer values. Moreover, Dirac showed that electrons, protons, and
neutrons can be consistently coupled with magnetic monopoles since the physical fields
are single-valued instead of the function Λ [6].

On the other hand, in U(1) compact gauge theories, the gauge transformations are
wider. Since the only gauge-invariant observable is the Wilson loop [1]

OC = e−iq
∮
C
dxµAµ , (2.4)

any transformation that leaves OC invariant is a gauge transformation. So, in addition
to the gauge transformations allowed in the R gauge theory, there are also large gauge
transformations. Such transformations have multi-valued Λ functions and cannot be
smoothly deformed into the identity. In general, any multi-valued Λ that leaves

eiqΛ, (2.5)

single valued will generate valid gauge transformations. For example, a charged field ψ
transform as

ψ → eiqΛψ. (2.6)

To make the field single-valued, eiqΛ must be single-valued instead of Λ, as mentioned
early. In such cases, the Chern-Simons partition function will be gauge invariant instead
of the Chern-Simons action, as long as the level κ is an integer. Moreover, the U(1) gauge
theory has quantized electric charges and admit magnetic monopoles. So, a compact
gauge theory is a good theory to describe the real world, while a non-compact is not.
In the following, we will use these properties to proceed with the quantization of the
Chern-Simons level.

To see the quantization of the level κ, consider a 2+1-dimensional manifold S2×S1,
with the time circle of radius R parametrized by the coordinate x0 ∈ [0, 2πR), as described
by the Figure 1. Through the S2 we place a unit of Dirac magnetic flux, with e ≡ 1,

1
2π

∫
s2
d2xF12 = 1, (2.7)

and we take a constant gauge field configuration A0 = a. For this particular configuration,
in the presence of the above background magnetic flux, the Chern-Simons action can be
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Figure 1 – A 2 + 1 dimensional manifold S2 × S1 .

written as

S = 2πκRa. (2.8)

Actually this calculation is a little tricky [6, 11]. In the presence of the non-vanishing
magnetic flux through S2, the gauge field Aµ has a Dirac string singularity. In order to
avoid ambiguities, it should be carried out in terms of gauge-invariant quantities, as follows

∂S

∂a
=

κ

4π

∫
d3xεµνρ

∂Aµ
∂a

Fνρ,

=
κ

4π

∫
d3xεµνρδµ0Fνρ,

=
κ

2π

∫
d3xF12,

= 2πκR. (2.9)

So, integrating on a and using the fact that S = 0 at a = 0, we get the result (2.8).
The non-trivial background geometry of the Figure 1 allow us to make a large gauge
transformation that winds around the time circle, with

Λ =
x0
R

. (2.10)

Note that due to the periodicity condition of the time coordinate, the gauge function is
not single-valued, but was chosen to make eiΛ single-valued. Under this transformation
the action (2.8) changes by

S → S + 2κπ. (2.11)

We see that the Chern-Simons action is not gauge-invariant. However in quantum theory,
the relevant quantity is the Chern-Simons partition function, which depends only on

eiS , (2.12)

which is gauge-invariant provided κ ∈ Z, as mentioned early. Although we have shown the
quantization of the Chern-Simons level using a particular example, this result is general.
In the section (3.1) we will show a more natural quantization condition.
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2.3 Maxwell-Chern-Simons Theory
Consider firstly the Maxwell theory,

S = − 1
4e2

∫
d3xFµνF

µν , (2.13)

where Fµν = ∂µAν − ∂νAµ and e2 is a coupling constant with unity mass dimension. The
equation of motion,

∂µF
µν = 0, (2.14)

describes the propagation of a single massless degree of freedom, since only a single
polarization is allowed. Now, let us see the consequences of adding to the Maxwell action
a Chern-Simons term,

S =
∫
d3x

(
− 1

4e2FµνF
µν +

κ

4πε
µνρAµ∂νAρ

)
. (2.15)

The resulting equation of motion,

∂µF
µν +

κe2

4π ε
νρσFρσ = 0, (2.16)

no longer describes a massless excitation, but rather the propagation of a single physical
degree of freedom with mass

m =
κe2

2π . (2.17)

The most direct way to see the origin of this mass is to rewrite the equation of motion as,∂µ∂µ +
(
κe2

2π

)2 F̃ ν = 0, (2.18)

where F̃µ is the dual field defined by

F̃µ ≡ 1
2ε
µνρ∂νAρ. (2.19)

From (2.18) we immediately identify the mass of the excitation. Another useful way to
understand the origin of the massive excitations is to compute the propagator of the
theory. Firstly, as the action is gauge-invariant, we have to extract out the redundant
field configurations via the Faddeev-Popov procedure. However, in this case, the ghost
fields decouple from the gauge field and can be integrated out. We will see that in the
non-Abelian case this is not true. So, we can simply add a gauge-fixing term to the action,

S =
∫
d3x

(
− 1

4e2 FµνF
µν +

κ

4πε
µνρAµ∂νAρ −

1
2ξe2 (∂

µAµ)
2
)

. (2.20)

To proceed with the calculations it is more convenient to rewrite the action as,

S =
∫
d3x

1
2e2Aµ

(
�ηµν − ∂µ∂ν

(
1− 1

ξ

)
− κe2

2π ε
µνρ∂ρ

)
Aν . (2.21)
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So, we define the propagator ∆µν(x− y) of the gauge field as the inverse of the operator
between the brackets,(

�ηµν − ∂µ∂ν
(

1− 1
ξ

)
− κe2

2π ε
µνρ∂ρ

)
∆νσ(x− y) = iδµσδ

(3)(x− y). (2.22)

or in the momentum space,(
−p2ηµν + pµpν

(
1− 1

ξ

)
+
iκe2

2π εµνρpρ

)
∆νσ(p) = iδµσ . (2.23)

To find the explicit form of the propagator, we write down the most general expression
compatible with Lorentz invariance,

∆νσ(p) = f(p2)ηνσ + g(p2)pνpσ + h(p2)ενσλp
λ. (2.24)

Substituting this expression into (2.23), we find

∆νσ(p) = e2
(
p2pνpσ − pνpσ − i(κe2/2π)ενσλpλ

p2(p2 − (κe2/2π)2)
− ξ pνpσ

(p2)2

)
. (2.25)

The propagator has one pole at p2 = κe2/2π and other at p2 = 0. The first pole shows
that the excitations are now massive, while the second can be viewed as the pole of
Maxwell theory at high energies.

So, the effect of the Chern-Simons is to give mass to the gauge field. This gauge-
invariant mechanism of mass generation is completely independent of the standard Higgs
mechanism. In fact, we can also consider the Higgs mechanism in a Maxwell-Chern-Simons
theory coupled to matter, including a symmetry breaking potential. In this case, we find
two independent gauge field masses [10].

The physics described by the pure Chern-Simons theory can be understood by
taking the limit e2 → ∞ with κ kept fixed in the above equations. From (2.18) we see
that the photon becomes infinitely massive and no physical excitations are left. In other
words, one project the Hilbert space onto the ground state by isolating it from the rest of
the spectrum by an infinite gap.

Therefore, for certain systems that has no propagating degrees of freedom at low
energies, the Chern-Simons is a good effective theory for describe its low-energy properties,
such as the properties of the ground states.

2.4 Topological Theory
Another important property of the Chern-Simons is its topological nature. To see

this, let us remember that given a theory defined in a flat space, we can write it in a
curved space by replacing∫

dDxL(ηµν ,φ, ∂µφ, · · · )→
∫
dDx
√
−gL(gµν ,φ, ∂µφ, · · · ), (2.26)
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where ηµν is the Minkowski metric, gµν = gµν(x) is the space-time dependent metric and
g ≡ det gµν . Recall that we can construct the energy-momentum tensor of a theory defined
in a flat space by deriving the action in the curved space in relation to the arbitrary metric,

Tµν ∼
δ

δgµν

∫
dDx
√
−gL(gµν ,φ, ∂µφ, · · · )

∣∣∣∣∣
gµν=ηµν

(2.27)

and from Tµν get the conserved quantities,

H =
∫
dD−1x T 00 and P i =

∫
dD−1x T 0i. (2.28)

Looking at the action (2.1), we see that the field indices are contracted with the Levi-
Civita symbol, instead of the metric ηµν . Furthermore, the action is invariant under
general coordinate transformations, since the Levi-Civita symbol is a density tensor whose
transformation compensates the Jacobian of the integration measure, so switching to a
curved space the factor √−g is not necessary. Thus, the theory does not depend on the
metric of the background space-time manifold, but only on its topology, as we shall see in
the next section.

According to equation (2.27) the energy-momentum tensor of the Chern-Simons
theory is null, in particular the Hamiltonian vanishes, which means that there are no
degrees of freedom propagating in the bulk or equivalently all quantum states have zero
energy, as we have seen in the previous section.

2.5 Ground State Degeneracy
As we have seen above, as a consequence of its topological nature, the Chern-Simons

Hamiltonian is null. So, when we quantize the theory, the non-trivial question that arises
concerns the degeneracy of the ground state. Since all quantum states have zero energy, we
can calculate the degeneracy by counting the number of dimensions of the Hilbert space,
which depends on the topology of the compactified two dimensional space [5]. Examples
of spatial manifolds are in Figure 2.

Figure 2 – Examples of spatial manifolds, M2, characterized by the genus g .

We will discuss two different approaches to address this question. For simplicity
let us consider the system on a toroidal manifold with genus g = 1. In the end, we will
generalize the result for a manifold of arbitrary genus g.
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The first approach is to map the Chern-Simons action on the Landau problem. In
the gauge A0 = 0, the Chern-Simons action becomes,

S = − κ

4π

∫
d3xεijAiȦj . (2.29)

The equation of motion for A0 should be imposed as a constraint

εij∂iAj = 0. (2.30)

On the torus, the gauge fields that satisfy this equation can be parameterized as

Ai = ∂iφ+Ai(t). (2.31)

The term Ai(t) is interpreted as collective excitations of the ground state. The torus can
be parameterized as a rectangle L1 ×L2 with periodic boundary conditions xi ∼ xi + Li,
as described in Figure 3.

Figure 3 – Parametrization of the torus in terms of a rectangle of sides L1×L2.

So, inserting (2.31) into (2.29), we have

S = −L1L2
κ

4π

∫
dtεijAi∂0Aj . (2.32)

There is still a residual gauge symmetry that does not involve the time coordinate. Such
transformation is called large gauge transformation and is given by

Ai → A′i = Ai − iU−1∂iU , (2.33)

with

U = e
2πi
(
n1

x1
L1

+n2
x2
L2

)
, (2.34)

where n1 and n2 are integers to make U single valued on the torus. Thus, the following
gauge configurations

(A1,A2) and (A′1,A′2) =
(
A1 + 2π n1

L1
,A2 + 2π n2

L2

)
, (2.35)

are equivalent. It is convenient introduce new coordinates

Ai(t) ≡
2π
Li
qi(t), (2.36)
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such that the action can be rewritten as

S = −κπ
∫
dt εijqiq̇j . (2.37)

It is also convenient to add a kinetic term to the action to provide a non-trivial dynamics
to the system,

S =
∫
dt
(1

2mq̇
2
i − κπεijqiq̇j

)
. (2.38)

At the end we will take the limit m → 0. Note that the action describes the dynamics
of a charged particle moving in a torus parameterized by (q1, q2), coupled with a vector
potential Ai = −εijqiq̇j . The Hamiltonian associated to the action (2.38) is

H =
1

2m
[
−(∂1 − iA1)

2 − (∂2 − iA2)
2
]

, (2.39)

which is exactly the Hamiltonian of the Landau problem, whose ground state degeneracy
is well known. The magnetic field can be expressed as

B = 2κπ, (2.40)

and the degeneracy of the Landau problem is

deg =
B

2π ×A,

= κ. (2.41)

Note that the degeneracy does not depend on mass m, which means that this is really the
ground state degeneracy of the Chern-Simons theory on a torus. All the excited states
are proportional to 1/m. Thus in the limit m → 0, the energy gap between the levels
becomes infinite, isolating the ground state from the rest of the spectrum.

The addition of the Maxwell term breaks the topological character of the theory.
Nonetheless, it is possible to determine the ground state degeneracy without addition of a
regulating term which breaks this character [4]. In the following, we present an alternative
way to find the same result as above. Note that, integrating by parts, the action (2.37)
may be rewritten as

S =
∫
dt(−2πκq1q̇2). (2.42)

If we regard q2 as the position variable, its conjugate momentum is

p2 =
∂L

∂q̇2
= −2πκq1. (2.43)

The Hamiltonian is null,

H = p2q̇2 −L = 0, (2.44)
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and the Schrodinger equation reads

0 · ψ = Eψ. (2.45)

Despite the unusual form of the equation, it is possible to determine the wavefunction
ψ(q2) by imposing some constraints. As the particle lives on a torus, which might be
parameterized as a square 1× 1 with periodic boundary condition qi ∼ qi + 1, we must
require that the wavefunction satisfies the same periodicity condition. For the coordinate
q2,

ψ(q2) = ψ(q2 + 1). (2.46)

This requirement implies that

ψ(q2) =
∞∑

n=−∞
cn e

i2πnq2 , (2.47)

where n ∈ Z. To impose the periodicity condition in the coordinate q1, recall that it is
related to the canonical momentum p2, so we have to take the Fourier transforms of the
wavefunction ψ(q2),

ψ̄(p2) =
∫
dq2 ψ(q2)e

ip2q2 , (2.48)

=
∞∑

n=−∞
cn

∫
dq2 e

iq2(p2+2nπ), (2.49)

=
∞∑

n=−∞
cn δ(p2 + 2nπ). (2.50)

Using the relation (2.43), we have

ψ(q1) =
∞∑

n=−∞
cn δ(κq1 − n), (2.51)

and imposing the periodicity condition

ψ(q1) = ψ(q1 + 1), (2.52)

we see that
∞∑

n=−∞
cn δ(κq1 − n) =

∞∑
n=−∞

cn δ(κ+ κq1 − n). (2.53)

With the redefinition of n→ n+ κ, we are left with a relation between the coefficients

cn = cn+κ. (2.54)

Which shows that exactly κ coefficients c′κs are independent and consequently the degen-
eracy of the ground state is κ. For example, choosing κ = 2,

c0 = c2 = · · · = c2n,

c1 = c3 = · · · = c2n+1,
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Figure 4 – Manifold of arbitrary genus g.

only two coefficients are independent, i.e., two quantum states have zero energy.
The generalization for a manifold of arbitrary genus g is straightforward. We can

imagine that for each torus of Figure 4 there is a Chern-Simons term (2.42), such that the
full action can be expressed as

S = −2π
g∑

i,j=1

∫
d3xKijqiq̇j , (2.55)

where Kij is the following g× g diagonal matrix

Kij =


κ

. . .
κ

 (2.56)

So, redoing the previous calculations for the action (2.55), the recurrence relation between
the coefficients reads

cn1,n2,··· ,ng = cn1+κ,n2+κ,··· ,ng+κ. (2.57)

For example, taking a manifold with genus g = 3 and κ = 2,

c0,0,0 = c2,2,2 = · · · = c2n,2n,2n,

c0,0,1 = c2,2,3 = · · · = c2n,2n,2n+1,

c0,1,0 = c2,3,2 = · · · = c2n,2n+1,2n,

c1,0,0 = c3,2,2 = · · · = c2n+1,2n,2n,

c0,1,1 = c2,3,3 = · · · = c2n,2n+1,2n+1,

c1,0,1 = c3,2,3 = · · · = c2n+1,2n,2n+1,

c1,1,0 = c3,3,2 = · · · = c2n+1,2n+1,2n,

c1,1,1 = c3,3,3 = · · · = c2n+1,2n+1,2n+1,

we see that eight coefficients are independent and, consequently, there are eight states
with zero energy. Therefore, the generalization for a manifold of arbitrary genus g gives a
ground state with degeneracy of

deg = κg. (2.58)
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The dependence of the degeneracy with the genus of the manifold is a manifestation of
the topological nature of the Chern-Simons theory.

2.6 Chern-Simons Coupled to Matter Fields
In 3+1 dimensional quantum field theories, particles may have either integer or

half-integer spins, called bosons or fermions, respectively. On the other hand, in 2+1
dimensions, there are possibilities of particles to have arbitrary spin and statistics. Such
particles are called anyons and are important to understand many problems in condensed
matter physics [13].

The notion of spin and statistics are usually related to the sign that a many-body
wavefunction acquires when any two identical particles are interchanged. Recall that the
interchange of two particles can be performed by rotating one of them half-way around
the other and then translating both by an appropriated distance. Under a rotation of ∆φ,

Figure 5 – Particle 2 rotating around particle 1 by an angle ∆φ.

naturally, the wave function must acquire a phase proportional to the rotating angle since
the configurations described by Figure 5 differ only by this parameter and must describe
the same physics. So,

eiν∆φ, (2.59)

where ν is called statistics parameter. The interchange operation can be performed by a
rotation of ∆φ = π or ∆φ = −π, as showed in the Figures 6 and 7. In 3+1 dimensional
case, both rotations are equivalent, since we can continuously deform one to each other.
From the Figures 6 and 7 we can imagine that the deformation of the trajectories it is
possible due to the extra dimension perpendicular to the plane. Thus,

eiνπ = e−iνπ. (2.60)

As a consequence, the particles may have only bosonic (ν = 0,mod 2) or fermionic
(ν = 1,mod 2) statistic. Actually, this result is true for d+ 1 with d ≥ 3.

On the other hand, in 2+1 dimensions due to the hard-core interaction between the
particles, the configuration space has a non-trivial topology and we cannot continuously
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Figure 6 – Particle 2 rotating counterclockwise around particle 1 by an angle
∆φ = π.

Figure 7 – Particle 2 rotating clockwise around particle 1 by an angle ∆φ = −π.

deform the trajectory of the particles. So, the above equality does not hold anymore

eiνπ 6= e−iνπ, (2.61)

and the statistical parameter ν can be arbitrary. As mentioned previously, particles that
have arbitrary statistic are called anyons and The Chern-Simons theory incorporates
some anyonic properties. To see these features, consider a matter field coupled to the
Chern-Simons gauge field through the conserved current Jµ,

S =
∫
d3x

κ

4πε
µνρAµ∂νAρ −AµJµ. (2.62)

For a collection of identical non-relativistic point particles of unit charge and mass m
moving in a plane, the current Jµ is

J0(x) =
N∑
a=1

δ2(~x− ~xa(t)) and J i(x) =
N∑
a=1

ẋia(t)δ
2(~x− ~xa(t)), (2.63)

where ~xa(t) describes the trajectory of the a-th particle. From the Chern-Simons equation
of motion,

κ

4πε
µνρFνρ = Jµ, (2.64)

the zero component of the field equation,

κ

2πF12 =
N∑
a=1

δ2(~x− ~xa(t)), (2.65)
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tells us that the Chern-Simons coupling has the effect of endowing the matter charged
density a magnetic flux.

Consider a kinetic term for the charged particles along with the action (2.62)

S =
m

2

N∑
a=1

∫
dt ~̇x2

a +
∫
d3x

κ

4πε
µνρAµ∂νAρ −AµJµ. (2.66)

In the following, we may determine the potential Aµ from (2.64) by considering, for
example, the Coulomb gauge A0 = 0 and imposing the constraint ∇ · ~A = 0. So,

Ai(x) =
1
κ

N∑
a=1

εij
xj − xja(t)
|~x− ~xa(t)|2

. (2.67)

The Hamiltonian of the system is

H =
1

2m

N∑
a=1

[~p2
a − ~A(~xa)]

2, (2.68)

where

Ai(~xa) =
1
κ

N∑
b 6=a

εij
xja − x

j
b(t)

|~xa − ~xb|2
. (2.69)

As a consequence of the hard-core interaction, the potential is a non-local function and
the corresponding magnetic field,

B(~xa) =
2π
κ

N∑
b 6=a

δ2(~xa − ~xb), (2.70)

shows that each particle see the others N − 1 as a point of flux

Φ =
2π
κ

. (2.71)

Therefore, the Chern-Simons gauge field plays the role of mediating the long-range
interaction between the charged particles, whose effect is to attach flux for each of them,
as mentioned early. Classically, the coupling plays no role, which means that the coupling
effect is a purely quantum phenomena.

As a result of this flux attachment, when one such particle is transported adiabati-
cally along a curve C around the other, due to the Aharonov-Bohm effect, the wavefunction
picks up a phase

ei
∮
C
~A·d~x1 = ei2π/κ. (2.72)

If the adiabatic transporting is interpreted as the exchange of the particles than we get
half of this phase

eiπ/κ. (2.73)
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In addition to this phase, the wave function also acquires a phase due to the intrinsic
quantum statistic of the particles. Thus, assuming that (2.66) describes bosonic or
fermionic particles when we interchange two of them, the wavefunction will pick up a total
phase of

±eiπ/κ. (2.74)

Therefore, the effect of the Chern-Simons coupling is to transmute the statistic of the
particles. In particular, if we take κ = ±1, bosons become fermions and vice versa. This
process is called 3d bosonization [21, 22]. For κ 6= ±1, the particles are neither bosons nor
fermions. Instead, they carry anyonic statistics.

2.7 Bulk-Edge Correspondence
As we have seen throughout the text, the Chern-Simons Hamiltonian is null and

consequently, there are no degrees of freedom propagating in the bulk. Nonetheless, in a
bordered manifold, dynamical degrees of freedom may arise on the edge [1, 2]. The goal of
this section is to understand the physics of the edge and how it is related to the physics of
the bulk.

According to section 2.2, the Chern-Simons action is not gauge-invariant if the
manifold is bordered since its variation is a boundary term. In particular, consider the
theory defined in the manifold depicted in the Figure 8.

Figure 8 – A manifold with boundary in the x-axis.

Under a gauge transformation the action changes by

δS =
κ

4π

∫
dtdxΛ(t,x, 0)(∂0A1 − ∂1A0)|y=0. (2.75)

We can guarantee that the theory remains gauge invariant, restricting the transformation
such that

Λ(t,x, 0) = 0. (2.76)
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Due to this restriction, the gauge transformation can not be used to eliminate degrees of
freedom at the boundary. Consequently, dynamical edge excitations may arise. On the
other hand, in the bulk, we can fix the gauge as long as the transformation respect the
above condition.

To obtain an edge theory with non-trivial dynamic, i.e., which describes excitations
that propagate with finite velocities, we should treat the velocity as an external parameter,
since the bulk does not contain this information. The most convenient way to introduce
dynamic to the edge excitations is through the gauge fixing. The most common gauge
fixing condition is A0 = 0, but this choice does not introduce dynamic to the edge
excitations, so we can chose the following condition

A0 = vA1. (2.77)

Furthermore, the equation of motion of A0 must be impose as a constraint,

ε0ij∂iAj = 0. (2.78)

The equation is automatically satisfied choosing

Aj = ∂jφ. (2.79)

Substituting (2.77) and (2.79) into the Chern-Simons action (2.1), we have

Sedge =
κ

4π

∫
dtdx φ(∂0 − v∂1)∂1φ, (2.80)

which is a chiral boson theory. The equation of motion,

(∂0 − v∂1)∂1φ = 0, (2.81)

describes an edge excitation propagating with velocity v only in one direction. If we had
inserted −v in (2.77), the excitation would propagate in the opposite direction.

An alternative and more elegant way to explore the correspondence between bulk
and edge physics is modifying the theory including an edge contribution,

ST = SCS + Sedge, (2.82)

such that, in the presence of the boundary, ST be gauge invariant. It is possible if

δSedge = −δSCS . (2.83)

Since the full action is gauge-invariant, we can explore all symmetries and arbitrariness
to determine the form of the Sedge and study its properties independently of the bulk
physics. As the variation of the Chern-Simons action under gauge transformation is given
by (2.75), our first guess to the form of the edge action is

Sedge = −
κ

4π

∫
dtdx φ(∂0A1 − ∂1A0)|y=0, (2.84)
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where the scalar field φ lives at the boundary of the manifold and transform as

φ(x, t)→ φ(x, t) + Λ(t,x, 0). (2.85)

The Sedge contains three fields φ,A0 and A1, which due to the symmetries of the action
not all are independent. The first symmetry is a gauge transformation on the edge,

A0 → A0 + ∂0χ(x, t) and A1 → A1 + ∂1χ(x, t). (2.86)

We can use χ(t,x) to fix one of these fields. As in the first approach, to construct a theory
with non-trivial dynamic on the edge, we have to add the velocity of the edge excitations
via gauge transformation. Again, we choose

A0 = vA1. (2.87)

So, the action assumes the form

Sedge = −
κ

4π

∫
dtdx φ(∂0 − v∂1)A1. (2.88)

There is also a residual gauge transformation that preserves the gauge choice (2.87),

A0 → A0 + ∂0ξ(x, t) and A1 → A1 + ∂1ξ(x, t), (2.89)

where the function ξ = ξ(x+ vt). On the other hand, the field equations

(∂0 − v∂1)A1 = 0 and (∂0 − v∂1)φ = 0, (2.90)

also requires that A1 = A1(x+ vt) and φ = φ(x+ vt). So, we can use ξ(x, t) to fix one
of the remaining fields. For example, the choice

A1 = ∂1φ, (2.91)

results in the action

Sedge = −
κ

4π

∫
dtdx φ(∂0 − v∂1)∂1φ, (2.92)

that also describes a chiral boson. This behavior is compatible with the Chern-Simons
action since it breaks both parity and time-reversal symmetries. The boundary action
obtained from the gauge-invariance restoration has only 1 gapless bosonic chiral excitation,
i.e.,

cR/L = 1. (2.93)

This edge structure appears in a class of topological phases called Abelian fractional
quantum Hall phases [9].
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3 Non-Abelian Chern-Simons Theory

So far, we have studied gauge theories described by the Abelian gauge group U(1).
From now on, we will generalize to gauge theories based on non-Abelian gauge groups G,
more specifically G = SU(N). As in the previous chapter, we will discuss the quantization
of the level κ, the basic dynamical features of the non-Abelian topologically massive gauge
theory and the edge theory, which in this case is given in term of the WZW model.

3.1 Quantization of the level κ
The first gauge theory we can construct is a non-Abelian version of the Chern-

Simons theory (2.1),

S =
κ

4π

∫
d3x εµνρ tr

(
Aµ∂νAρ −

2i
3 AµAνAρ

)
, (3.1)

where the Chern-Simons level κ is a dimensionless constant and the gauge fields Aµ are
promoted to non-commutating objects that take values in the underlying Lie algebra G,

Aµ = AaµT
a, (3.2)

whose generators T a are assumed to be Hermitian and so satisfy the commutation relation

[T a,T b] = ifabc T c, (3.3)

where fabc are the fully anti-symmetric structure constants. In the fundamental represen-
tation, the generators are normalized as

tr(T aT b) =
1
2δ

ab, (3.4)

with a, b, c = 1, ...dim(G). Under a local gauge transformation by a group element Ω, the
gauge field Aµ transform as

Aµ → Ω−1AµΩ + iΩ−1∂µΩ, (3.5)

where Ω(x) ∈ SU(N). It will also be useful to define an infinitesimal gauge transformation,
which to leading order can be written as,

Ω(x) ≈ 1 + iωa(x)T a + · · · . (3.6)

This corresponds to an infinitesimal change in the gauge field,

δAaµ = (Dµω)a, (3.7)
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where Dµ a c = ∂µδ
a
c + fabcAbµ is the covariant derivative. The non-Abelian equations of

motion have the same form as the Abelian one

Fµν = 0. (3.8)

The solutions are pure gauges Aµ = iΩ−1∂µΩ. However, the equation may have interesting
solutions if we take a non-trivial background geometry, as we have seen in the Abelian
case where we consider the theory on a torus.

Here, the Chern-Simons level κ also must be an integer. Indeed, under the gauge
transformation (3.5), the action change by

S → S +
κ

4π

∫
d3x εµνρ

[
∂νtr(∂µΩ Ω−1Aρ) +

1
3tr(Ω

−1∂µΩ Ω−1∂νΩ Ω−1∂ρΩ)
]

. (3.9)

The first term is a total derivative, which vanishes by choosing appropriate boundary
conditions. If we take the background geometry to be a compactified manifold S3, the
gauge transformations are characterized by the homotopy group Π3(SU(N)) ∼= Z and the
last term can be interpreted as the winding number of the gauge transformation around
the space-time [11, 23],

ω(Ω) =
1

24π2

∫
d3x εµνρtr(Ω−1∂µΩ Ω−1∂νΩ Ω−1∂ρΩ) ∈ Z. (3.10)

Thus, the non-Abelian Chern-Simons action changes by an additive term under a gauge
transformation

S → S + 2πκω(Ω). (3.11)

As we have seen earlier, if we look at the weight of the partition function eiS , it will be
gauge invariant provided that

κ ∈ Z. (3.12)

As in the Abelian case, at the quantum level, the theory is gauge invariant. Although
this requirement arises more directly for the non-Abelian theory, we can imagine that the
Abelian theory is a subgroup of the non-Abelian. Thus the quantization condition found
for the non-Abelian case is also valid for the Abelian one.

3.2 Yang-Mills-Chern-Simons Theory
Dynamical content can be attributed to the Chern-Simons theory by constructing

the non-Abelian version of the Maxwell theory (2.13). From the gauge field, we can
construct the Lie-algebra valued field strength

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ], (3.13)
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that under the gauge transformation (3.5) changes by

Fµν → Ω−1FµνΩ. (3.14)

Although the field strength is not gauge-invariant, due to its simple transformation law,
it is possible to construct a gauge invariant theory from Fµν using the properties of the
trace. This theory is called Yang-Mills,

SYM = − 1
2e2

∫
d3x tr(FµνF

µν), (3.15)

where e2 is the Yang-Mills coupling. As in the Maxwell case, the theory has nontrivial
dynamical content and propagating degrees of freedom, described by the equation of
motion

DµFµν = 0. (3.16)

Note that the non-Abelian equation of motion differs from the Abelian one (2.14) by
commutator terms, both inside the covariant derivative and the field strength. The
non-linear character of the non-Abelian equation means that the Yang-Mills theory is
self-interacting.

As we did in section (2.3), we can combine the two non-Abelian gauge actions into
a single one,

S =
∫
d3x

[
− 1

4e2 F
a
µνF

aµν +
κ

4πε
µνρ

(1
2A

a
µ∂νA

a
ρ +

1
6f

abcAaµA
b
νA

c
ρ

)]
. (3.17)

The resulting theory is called Yang-Mills-Chern-Simons theory or topologically massive
Yang-Mills theory. As in the Abelian case, the presence of the Chern-Simons term results
in a new form of mass generation for the gauge field. To see the origin of the mass, let us
calculate the propagator of the theory. Firstly, as the action is gauge invariant, we have to
fix the gauge via the Faddeev-Popov procedure,

S =
∫
d3x

[
− 1

4e2 F
a
µνF

aµν +
κ

4πε
µνρ

(1
2A

a
µ∂νA

a
ρ +

1
6f

abcAaµA
b
νA

c
ρ

)

− 1
2ξe2 (F

a[Aµ(x)])
2 +

∫
d3y C̄a(x)

δF a[Aθµ(x)]

δθb(y)

∣∣∣∣∣∣
θ=0

Cb(y)

 . (3.18)

Choosing the covariant gauge F a[Aµ(x)] ≡ ∂µAaµ, we have

S =
∫
d3x

[
− 1

4e2 F
a
µνF

aµν +
κ

4πε
µνρ

(1
2A

a
µ∂νA

a
ρ +

1
6f

abcAaµA
b
νA

c
ρ

)
− 1

2ξe2 (∂
µAaµ)

2 − ∂µC̄a(DµC)a
]

, (3.19)

where C̄a and Cb are the Faddeev-Popov ghosts fields. Note that due to the covariant
derivative, the ghost fields interact with the gauge field and cannot be ignored in quantum
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processes. To see the massive pole is enough to investigate the quadratic part of the
gauge-fixed action,

S� =
∫
d3x

1
2e2A

a
µ

[
�ηµν − ∂µ∂ν(1− 1

ξ
)− κe2

4π ε
µνρ∂ρ

]
Aaν . (3.20)

Note that this action is the same as the Abelian one (2.21), with a slight difference of a
factor of 2 in the last term due to the normalization of the trace. So, as in the Abelian
case, the non-Abelian Chern-Simons term gives a mass to the gauge field.

3.3 Wess-Zumino-Witten model
As in the Abelian case, the non-Abelian Chern-Simons action does not depend on

the metric of the space-time background manifold. So, no propagating degrees of freedom
arises in the bulk. Nonetheless, on a manifold with a boundary, dynamical degrees of
freedom may arise on the edge.

Let us consider the non-Abelian Chern-Simons action (3.1) written in components

S =
κ

8π

∫
d3x εµνρ

(
Aaµ∂νA

a
ρ +

1
3f

abcAaµA
b
νA

c
ρ

)
. (3.21)

Under the infinitesimal gauge transformation (3.7) the action changes by a total derivative

δS =
κ

8π

∫
d3x εµνρ∂µ(ω

a∂νA
a
ρ). (3.22)

This result can also be obtained by substituting the infinitesimal gauge transformation
(3.6) in the expression (3.9). So, considering a manifold as in Figure 8, the boundary term
reads

δS =
κ

8π

∫
dxdt ωa(∂0A

a
1 − ∂1A

a
0)|y=0. (3.23)

Note that this term has exactly the same form as (2.75). So, to ensure that the theory
remains gauge invariant, we must restrict the transformations as

ωa(t,x, 0) = 0. (3.24)

Therefore, dynamical edge excitation can emerge, since we can not use the gauge trans-
formation to gauge away degrees of freedom at the boundary. As in the Abelian case, to
obtain a dynamical edge theory, we must insert the velocity of the edge excitation through
the fixing condition

A0 = vA1, (3.25)

and impose the equation of motion of A0 as a constraint

Fij = 0. (3.26)



3.3. Wess-Zumino-Witten model 41

As we have seen, the solutions of the equation of motion are pure gauges

Ai = iΩ−1∂iΩ. (3.27)

Substituting (3.25) and (3.27) into the non-Abelian Chern-Simons action (3.1), we have

S =
κ

4π

∫
dxdtTr(Ω−1(∂0 − v∂1)∂1Ω)

− κ

12π

∫
d3x εµνρTr(Ω−1∂µΩ Ω−1∂νΩ Ω−1∂ρΩ). (3.28)

This theory is known as Wess-Zumino-Witten theory and describes propagating edge
excitations as stated earlier [24, 25]. When we consider G = U(1), the above action
reduces to the chiral boson theory (2.80).
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4 Supersymmetry

In this chapter, we will present some basic elements of 3D minimal supersymmetry
(N = 1) in the x-space. We will show how to construct the supersymmetric version of
some models and discuss some of its main properties. A detailed treatment can be found
in [26].

4.1 General Properties
Consider an action containing a bosonic field b(x) and a fermionic field f(x).

Suppose one has an operation that transforms b(x) into f(x) and vice-versa,

δb(x) ∼ f(x)ε and δf(x) ∼ b(x)ε, (4.1)

where ε is an anticommuting constant parameter. Our starting point to construct super-
symmetry transformations lies in the dimensional analysis of the involved objects. In 2+1
space-time dimensions, the fields mass dimension is,

[b(x)] = 1/2 and [f(x)] = 1. (4.2)

From (4.1), we see that there is no value for the mass dimension of ε that satisfies both
relations simultaneously. So, if we choose

[ε] ≡ −1/2, (4.3)

the first relation holds and we can introduce a derivative in the second one to balance the
unit mass dimension gap, i.e.,

δb(x) ∼ f(x)ε and δf(x) ∼ ∂b(x)ε. (4.4)

If the theory has masses and dimensionful coupling constants, these objects can also be
used to balance them, as we will see later in this chapter.

One important feature is the matching of bosonic and fermionic degrees of freedom
in supersymmetric theories. We can choose the on-shell or off-shell scheme to see this.
In the first one, we evoke the equations of motion, while in the other one, we introduce
auxiliary degrees of freedom through non-dynamical fields. In the off-shell scheme, the
auxiliary fields also enter the supersymmetry transformations. Usually, they appear in the
action as F 2, so the transformations become

δb(x) ∼ f(x)ε, δf(x) ∼ ∂b(x)ε+ F (x)ε and δF (x) ∼ ε∂f(x) (4.5)
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The anticommuting nature of ε implies that the commutator of two supersymmetries is
non-trivial. In the on-shell scheme, it leads to rigid space-time translations,

δ1(δ2b(x)) ∼ ε1ε2∂b(x) and δ1(δ2f(x)) ∼ ε1ε2∂f(x). (4.6)

Finally, supersymmetry transformations must always be compatible with Lorentz invariance.
With all these ingredients, we are able to construct supersymmetry theories and explore
its properties.

4.1.1 Majorana Spinors and Gamma Matrices in 2+1 Dimensions

In what follows, let us discuss some properties of spinors and gamma matrices
in 2+1 space-time dimensions. The gamma matrices are 2× 2 matrices that satisfy the
Clifford algebra

{γµ, γν} = 2ηµν , (4.7)

and in the real representation,

(γ0)α β =

 0 −1
1 0

 , (γ1)α β =

 0 1
1 0

 , (γ2)α β =

 1 0
0 −1

 , (4.8)

act on two-component Majorana spinors ψα, α = 1, 2. Spinor indices are raised, lowered
and contracted by the antisymmetric matrix

Cαβ = −Cβα = −Cαβ =

 0 −i
i 0

 , CαβC
γδ = δγ[α δ

δ
β], (4.9)

accordingly to the north-western convention,

ψα = Cαβψβ, ψα = ψβCβα, (4.10)

and

ψχ = ψαχα = χαψα = χψ and ψ2 =
1
2ψ

αψα. (4.11)

In 2+1 space-time dimensions, the parity operation is defined as the reflection of only one
spatial coordinate, while the time-reversal operation corresponds to change only the time
sign,

P : x0 → x0, x1 → −x1, x2 → x2 and T : x0 → −x0, ~x→ ~x.

Under x1 parity operations, Majorana spinors transforms as

P : ψα(x)→ ψPα (x) = Sβ αψβ(x
0,−x1,x2), (4.12)
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where Sβα is a unitary matrix that mix up the different components of the spinor. To
determine S, we have to assume that both ψα(x) and ψPα (x) are solutions of the massless
Dirac equation. Firstly, by changing x1 → −x1, the equation reads

(iγ0∂0 − iγ1∂1 + iγ2∂2)ψ(x
0,−x1,x2) = 0. (4.13)

On the other hand, ψP is solution of the Dirac equation. So,

iγµ∂µψ
P(x) = 0,

(iγ0∂0 + iγ1∂1 + iγ2∂2)Sψ(x
0,−x1,x2) = 0,

−(iγ0∂0 + iγ1∂1 + iγ2∂2)Sψ(x
0,−x1,x2) = 0. (4.14)

Comparing the two equations, we find

Sβ α = (γ1)β α. (4.15)

So, the Majorana spinor parity transformation is

P : ψα(x)→ ψPα (x) = (γ1)β αψβ(x
0,−x1,x2). (4.16)

Similarly, for x2 parity operations, Majorana spinor transforms as

P : ψα(x)→ ψPα (x) = (γ2)β αψβ(x
0,x1,−x2). (4.17)

Under time-reversal operation, Majorana spinors transforms as

T : ψα(x)→ ψTα (x) = T β αψβ(−x0, ~x), (4.18)

where T βα is also a unitary matrix that mix up the different components of the spinor.
Again, to determine T , we will assume that both ψα(x) and ψTα (x) are solutions of
the massless Dirac equation. Firstly, by changing x0 → −x0 and taking the complex
conjugation, the equation changes by

(iγ0∂0 − iγi∂i)ψ(−x0, ~x) = 0. (4.19)

The transformed spinor ψT should also be solution of the Dirac equation

iγµ∂µψ
T (x) = 0,

(iγ0∂0 + iγi∂i)Tψ(−x0, ~x) = 0 (4.20)

So, by comparing the two equations, we find

T β α = (γ0)β α. (4.21)

Thus,

T : ψα(x)→ ψTα (x) = (γ0)β αψβ(−x0, ~x). (4.22)
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4.2 Wess-Zumino model
Starting with a real scalar field φ(x), a simple non-trivial model we can construct

without introducing masses or interaction terms, is

S =
∫
d3x

(1
2∂µφ∂

µφ
)

. (4.23)

This theory describes dynamical massless spin-0 particles. So, according to the previous
discussion, its supersymmetric extension must also describe dynamical massless spin-1/2
particles. To fulfill this requirement, we add a Majorana field ψα(x) to the action,

S =
∫
d3x

(1
2∂µφ∂

µφ+
1
2ψγ

µ∂µψ
)

. (4.24)

This theory is called the Wess-Zumino model. In what follows, note that the action
has one bosonic and two fermionic degrees of freedom, since the Majorana field has two
components. To match them, as required by supersymmetry, we may use the on-shell or
off-shell scheme.

In the first one, we evoke the fermionic equations of motion to constraint its degrees
of freedom and reduce them from two to one. In this case, the most general supersymmetry
transformation that can be constructed is

δφ = εψ,

δψα = α(γµε)α∂µφ, (4.25)

where α is a real coefficient to be determined. Under this transformation, the action (4.24)
changes by

δS =
∫
d3x(1− α) ε∂µψ∂µφ, (4.26)

thus, the invariance requirement fixes α = 1. In the off-shell scheme, we add an extra
bosonic degree of freedom via a non-dynamical auxiliary field F (x) of mass dimension
[F ] = 3/2,

S =
∫
d3x

(1
2∂µφ∂

µφ+
1
2ψγ

µ∂µψ+
1
2F

2
)

. (4.27)

In this case, the new dimensionful object also enters the supersymmetry transformation,

δφ = εψ,

δψα = β(γµε)α∂µφ+ γFεα, (4.28)

δF = εγµ∂µψ,

where β and γ are real coefficients to be determined. The variation of the action (4.27)
under the above supersymmetry transformation,

δS =
∫
d3x (1− β) ε∂µψ∂µφ+ (1− γ) ε(γµ∂µψ)F , (4.29)
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will vanish if β = γ = 1. An important property of supersymmetry transformations follows
from the commutator of two supersymmetries. For both supersymmetry transformations
(4.25) and (4.28), the commutator of two supersymmetries acting on the scalar field φ(x),
for example,

[δ1, δ2]φ = 2(ε2γµε1)∂µφ, (4.30)

leads to a rigid field translation of parameter 2(ε2γµε1). Is straightforward to check, that
the same result hold for ψα(x) and F (x).

4.3 Supersymmetric Abelian Chern-Simons Theory
The next step is to construct the supersymmetric version of the Abelian Chern-

Simons theory (2.1),

S =
κ

4π

∫
d3xεµνρAµ∂νAρ. (4.31)

As discussed along the text, the theory does not carry dynamical content, its description
is restricted to the topological properties of the system. Therefore, its supersymmetric
extension must contain a non-dynamical Majorana field λα(x). Thus,

S =
κ

4π

∫
d3x (εµνρAµ∂νAρ − λλ) . (4.32)

In this case, the bosonic degrees of freedom matches the fermionic ones, since we can
gauge away one bosonic field component. So, no auxiliary fields are needed and the most
general supersymmetry transformation reads

δAµ = εγµλ,

δλα = αεα∂µA
µ + β(γµγνε)αFµν , (4.33)

where the coefficients α and β are to be determined. Under this transformation, the action
(4.32) changes by

δS =
κ

4π

∫
d3x 2 ((1 + 2β)εµνρεγµλ∂νAρ − αελ∂µAµ) . (4.34)

The requirement of supersymmetry invariance fix the coefficients to be β = −1/2 and
α = 0. So, the supersymmetry transformation reduces to,

δAµ = εγµλ,

δλα = −1
2(γ

µγνε)αFµν , (4.35)

The commutator of two supersymmtries acting on Aµ gives

[δ1, δ2]Aµ = −(2ε1γνε2)Fµν , (4.36)
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or, if we rewrite in term of the gauge field,

[δ1, δ2]Aµ = 2(ε1γνε2)∂νAµ + ∂µ(−2(ε1γµε2)Aµ). (4.37)

The first term on the right-hand side is a translation with parameter 2(ε1γνε2) and the
second term is a gauge transformation of parameter Λ = −2(ε1γµε2)Aµ. On the other
hand, the commutator acting on the Majorana field,

[δ1, δ2]λα = 2(ε1γνε2)∂νλα, (4.38)

leads to only a rigid field translation of parameter 2(ε1γνε2).

4.4 Supersymmetric non-Abelian Chern-Simons Theory
Now, we will construct the supersymmetric extension of the non-Abelian Chern-

Simons theory (3.1),

S =
κ

4π

∫
d3x εµνρ

(1
2A

a
µ∂νA

a
ρ +

1
6f

abcAaµA
b
νA

c
ρ

)
. (4.39)

As in the Abelian case, the theory does not contain dynamical content. So, its su-
persymmetric version must be constructed by adding a non-dynamical Majorana field
λaα(x),

S =
κ

4π

∫
d3x

[
εµνρ

(1
2A

a
µ∂νA

a
ρ +

1
6f

abcAaµA
b
νA

c
ρ

)
− 1

2λ
aλa

]
. (4.40)

The counting of degrees of freedom in the on-shell and off-shell scheme is the same as in
the Abelian theory. Therefore, the most general supersymmetry transformation is,

δAaµ = εγµλ
a,

δλaα = αεα∂
µAaµ + β(γµγνε)αF

a
µν , (4.41)

where α and β are constants to be determined. Under these transformations, the action
(4.40) changes by

δS =
κ

4π

∫
d3x

[
(1 + 2β)

(
εµνρεγµλ

a∂νA
a
ρ +

1
2ε
µνρfabcεγµλ

aAbνA
c
ρ

)
− αελa∂µAaµ

]
.(4.42)

So, for α = 0 and β = −1/2, the action is invariant and the supersymmetry transformation
is rewritten as,

δAaµ = εγµλ
a,

δλa = −1
2(γ

µγνε)αF
a
µν . (4.43)

Furthermore, is straightforward to check that the supersymmetric action is also invariant
under the following gauge transformations,

δAaµ = (Dµξ)
a and δλaα = fabcλbαξ

c. (4.44)
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As in the previous section, we expect that the commutator of two supersymmetries acting
on Aaµ gives a translation and a gauge transformation. Indeed,

[δ1, δ2]A
a
µ = −2(ε1γνε2)F aµν , (4.45)

when written in terms of the gauge field,

[δ1, δ2]A
a
µ = 2(ε1γνε2)∂νAaµ − 2(ε1γνε2)(DµAν)

a, (4.46)

gives a translation and a gauge transformation with parameter ξa = −2(ε1γνε2)Aav, as
expected.

4.5 Supersymmetric Yang-Mills theory
The last example to be considered is the Yang-Mills theory (3.15),

S = − 1
e2

∫
d3x

(1
4F

a
µνF

aµν
)

. (4.47)

Since Aaµ describes one degree of freedom for a fixed index a, we have to add a real
fermionic field λaµ to make the action supersymmetric. Unlike the previous example, the
fermionic field must be dynamic,

S = − 1
e2

∫
d3x

(1
4F

a
µνF

aµν +
1
2λ

a(γµDµλ)
a
)

. (4.48)

It is straightforward to check that this action is also invariant under the gauge transforma-
tions (4.44). The gauge invariance can be used to gauge away one bosonic component,
such that the fermionic degrees of freedom match the bosonic ones. So, no auxiliary field
is needed. On the other hand, the dimensionful parameter e2 enters the supersymmetry
transformation, such that its general form is

δAaµ = εγµλ
a,

δλaα = β(γµγνε)αF
a
µν + γεα∂

µAaµ + δe2(γµε)αA
a
µ. (4.49)

The variation of the action (4.48) under this transformation is,

δS = − 1
e2

∫
d3x

[
F aµν(DµδAν)

a + λa(γµDµδλ)
a +

1
2f

abcλa(γµδAbµ)λ
c
]

. (4.50)

Looking at the supersymmetry transformation, we see that the first two terms are linear
in λ and therefore must cancel each other, while the last term is cubic and must separately
vanish, which happens due to the anti-symmetrization of the fermionic field. By explicitly
replacing the supersymmetry transformation, the two remaining terms become,

δS =
1
e2

∫
d3x [(DµF

µν)aεγνλ
a − βλaγµγνγρ(DµFνρ)

aε

− γ(γµDµ∂
νAν)

aε− δe2(γµDµAν)
aγνε

]
. (4.51)
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The two last terms must cancel by themselves, so γ = δ = 0. In the second term, we use
the identity,

γµγνγρ = γ[µγνγρ] + ηµνγρ + ηνργµ − ηµργν , (4.52)

to simplify the expression. So,

δS =
1
e2

∫
d3x

[
(1 + 2β)(DµF

µν)aεγνλ
a − βλaγ[µγνγρ](D[µFνρ])

aε
]

. (4.53)

The last term is null due to the Bianchi identity,

D[µFνρ] = 0, (4.54)

and supersymmetry invariance fixes the remaining coefficient to be β = −1/2. So, the
supersymmetry transformation (4.49) reduces to (4.43), giving the same result for the
commutator acting on the fields.
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5 Supersymmetric Abelian Chern-
Simons Theories

So far, we have studied 3D N = 1 supersymmetric models in the x-space defined
on manifolds without boundaries. From now on, we will generalize our discussion to 3D
N = 1 and N = 2 supersymmetry in the superspace, focusing on the Chern-Simons theory
defined on a manifold with a boundary at x3 = 01. In the presence of the boundary, half
of the supersymmetry is broken. The goal of the chapter is to show how to restore the
supersymmetry and study its implications at the boundary of the system.

5.1 N = 1 Supersymmetry Conventions and Definitions
The N = 1 superspace is a generalization of ordinary space, labeled by three

space-time coordinates xµ and two new Grassmannian coordinates θα. The Grassmann
variables satisfy the following differentiation and integration rules

{∂α, θβ} = δα
β, (5.1)

and ∫
dθ = 0 and

∫
d2θθ2 = −1. (5.2)

The generators Qα of supersymmetry transformations and the superspace covariant deriva-
tives Dα are defined as

Qα = ∂α − (γµθ)α∂µ and Dα = ∂α + (γµθ)α∂µ, (5.3)

and the corresponding algebra is

{Qα,Qβ} = −{Dα,Dβ} = 2γµαβ∂µ, {Qα,Dβ} = 0. (5.4)

The two basic superfields of 3D N = 1 superspace are scalar and spinor superfields. The
scalar superfield Φ is defined as

Φ(x, θ) = (A,ψα,F ) = A+ θψ+ θ2F , (5.5)

or in terms of supercovariant derivatives as

Φ = (Φ,DαΦ,−D2Φ)|, (5.6)
1 Specifically in this Chapter, the Minkowski metric is ηµν = (−,+,+), µ = 0, 1, 3 and m = 0, 1.
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where the symbol “|” means θ = 0. The scalar superfield has as components a scalar
field A(x), a Majorana field ψα(x) and an auxiliary scalar field F (x). Its supersymmetry
transformation is

δΦ = εQΦ, (5.7)

or explicitly,

δA+ θδψ+ θ2δF = εψ+ θ(γµε∂µA+ Fε) + θ2εγµ∂µψ. (5.8)

Comparing the θ-power on both sides, we find the supersymmetry transformation for the
component fields

δA = εψ, δψ = γµε∂µA+ Fε, δF = εγµ∂µψ. (5.9)

From these transformation laws, we can show that the commutator of two supersymmetries
leads to a rigid field translation. For the scalar field A(x), for example, we have

[δ1, δ2]A(x) = 2(ε2γµε1)∂µA(x). (5.10)

The same result holds for ψα(x) and F (x).
The spinor superfield Γα is defined as

Γα(x, θ) = (χα,M , vµ,λα) = χα + θαM + (γµθ)αvµ + θ2λ̃α, (5.11)

where we have a Majorana field χα(x), a gauge field vµ(x) and two auxiliary fields, the
Majorana field λ̃α(x) and the scalar field M(x). Nonetheless, the property {Qα,Dβ} = 0,
implies that objects like Dα1 ...DαnΦ transforms as superfields, namely,

δ(Dα1 ...DαnΦ) = εQ(Dα1 ...DαnΦ). (5.12)

In particular, we see that DαΦ is a spinor superfield like Γα. Thus, we define a superfield
gauge transformation as

δΓα = DαΦ, (5.13)

which in components reads,

δχα = ψα,

δM = F ,

δvµ = ∂µA,

δλα = 0, (5.14)

where λα = λ̃α + (γµ∂µχ)α. So, without loss of generality, we can redefine the spinor
superfield as

Γα(x, θ) = (χα,M , vµ,λα) = χα + θαM + (γµθ)αvµ + θ2(λα − (γµ∂µχ)α), (5.15)
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which in terms of supercovariant derivatives is

Γα = (Γα,−1
2D

αΓα,−1
2D

α(γµΓ)α,−D2Γα + (γµ∂µΓ)α)|. (5.16)

As for the scalar superfield, from its supersymmetry transformation,

δΓα = εQΓα, (5.17)

we find that the spinor superfield components transform as

δχ = Mε+ γµεvµ, δM = −1
2ελ+ εγµ∂µχ, (5.18)

δvµ = −1
2εγµλ+ ε∂µχ, δλ = −2εµνργρε∂µvν . (5.19)

In this case, the commutator of two supersymmetries leads to a rigid translation of
parameter 2(ε1γµε2), for χα(x), λα(x) and M(x). On the other hand, acting on vµ,

[δ1, δ2]vµ = 2(ε1γνε2)∂νvµ + ∂µ(−2(ε1γνε2)vν), (5.20)

leads to a rigid translation and a gauge transformation with parameter Λ = −2(ε1γνε2)vν .

5.1.1 N = 1 Supersymmetry with Boundary

To understand how supersymmetry is affected by the presence of a boundary,
consider the following simple example

S0 =
∫
d3xd2θΦ(x, θ) =

∫
d3xF (x). (5.21)

Under the supersymmetry transformation (5.9), the above action changes by a boundary
term,

δS0 =
∫
d3x ∂µ(εγ

µψ). (5.22)

So, considering a boundary at x3 = 0, the supersymmetry is broken,

δS0 =
∫
d3x ∂3(εγ

3ψ). (5.23)

Motivated by the gauge-invariance restoration, we can add new degrees of freedom at the
boundary to restore the supersymmetry. To see this, first, let us introduce the projectors,

(P±)
α
β =

1
2(1± γ

3)α β, (5.24)

and write the boundary action as

δS0 =
∫
d3x ∂3(ε+ψ− − ε−ψ+), (5.25)

where

ε±α ≡ (P±)
β
αεβ and ψ±α ≡ (P±)

β
αψβ. (5.26)
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Look at the supersymmetry transformation (5.9), we see that the action

S1 =
∫
d3x ∂3(Φ|θ=0) =

∫
d3x ∂3(A), (5.27)

transform as

δS1 =
∫
d3x ∂3(ε+ψ− + ε−ψ+). (5.28)

So, adding this action to (5.25), we have

δS = δ(S0 + S1) =
∫
d3x 2∂3(ε+ψ−), (5.29)

i.e., if we take ε+ to zero, we restore the half supersymmetry N = (0, 1) generated by
ε−Q+. On the other hand, subtracting the action (5.28) from (5.25),

δS = δ(S0 − S1) = −
∫
d3x 2∂3(ε−ψ+), (5.30)

and taking ε− to zero, we restore the half supersymmetry N = (1, 0) generated by
ε+Q−. In other words, in the presence of a boundary, we can restore only half of the
supersymmetry. So, considering a general 3D N = 1 action,

S0 =
∫
d3xd2θL, (5.31)

the action

S = S0 + S1 =
∫
d3x

(
d2θL± ∂3L|θ=0

)
, (5.32)

preserves half of the supersymmetry (N = (1, 0) or N = (0, 1)) generated by ε±Q∓. In
some cases, it might be convenient to add an extra 2D supersymmetric boundary action.
Such actions can be constructed systematically using multiplets decomposition, where
we split 3D N = 1 superfields into 2D N = (1, 0) or N = (0, 1) superfields, details are
summarized also in Appendix A.

5.2 Bulk-Edge Correspondence
The N = 1 Abelian Chern-Simons action is given by [14, 15, 16]

S0 = −
∫
d3xd2θ Γαωα, (5.33)

where Γα is the spinor superfield,

Γα = χα + θαM + (γµθ)αvµ + θ2(λα − (γµ∂µχ)α), (5.34)

and ωα is the gauge-invariant field strength,

ωα = −DβDαΓβ = λα − 2εµνρ(γρθ)α∂µvν + θ2(γµ∂µλ)α. (5.35)
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In components, the action (5.33) is written as

S0 =
∫
d3x (4εµνρvµ∂νvρ + λλ+ ∂µ(χγ

µλ)) . (5.36)

Notice that the auxiliary real scalar field M is absent from the action and χα enters only
as a total derivative. Under the superfield gauge transformation (5.14), the action varies
into a boundary term. Thus, on borderless manifolds, such term vanishes and we can
impose the Wess-Zumino gauge, χ = M = 0, so that the action reduces to (4.32), up to
numerical factors. On a manifold with a boundary at x3 = 0, the variation of the action
under the supersymmetry transformation (5.19) reads

δS0 =
∫
d3x ε∂3[ε

3mnvm(2∂nχ+ γnλ) + 2γmχF3m + γ3λM − λv3]. (5.37)

Applying the prescription (5.32), we can use the following boundary action to restore half
of the supersymmetry,

S1 =
∫
d3x ∂3(Γαωα)|θ=0 =

∫
d3x ∂3(χλ). (5.38)

Hence we form a N = (1, 0) action

SCS(1,0) = S0 + S1 =
∫
d3x (4εµνρvµ∂νvρ + λλ+ 2∂3(χ−λ+)) , (5.39)

and a N = (0, 1) action,

SCS(0,1) = S0 − S1 =
∫
d3x (4εµνρvµ∂νvρ + λλ− 2∂3(χ+λ−)) , (5.40)

where χλ = χ+λ− + χ−λ+ and χγ3λ = −χ+λ− + χ−λ+. Notice that, in both cases, the
non-propagating field λα appears linearly at the boundary coupled to the field χα. To
remove this coupling without imposing some field boundary conditions, we can separately
add supersymmetric actions at the boundary. For the N = (1, 0) case, we construct the
following ε+ invariant boundary action2,

Sb(1,0) = 2
∫
d3x ∂3

∫
dθα+(γ

m)β αX̂
−
β Σ̂+

m, (5.41)

= −2
∫
d3x ∂3(χ−λ+ − χ−γm∂mχ− − vmvm). (5.42)

Adding this action to (5.39), we have

Stotal(1,0) = SCS(1,0) + Sb(1,0),

=
∫
d3x (4εµνρvµ∂νvρ + λλ+ 2∂3(χ−γ

m∂mχ− + vmv
m)) , (5.43)

=
∫
d3x

(
4εµνρvµ∂νvρ + λλ− 2∂3(χ−γ

1∂−χ− + v+v−)
)

, (5.44)
2 See Appendix A.
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where v± = v0 ± v1 and ∂± = ∂0 ± ∂1. The addition of the extra boundary action
eliminates the linear term in λα and produces a dynamical chiral fermion at the boundary.
Analogously, for the N = (0, 1) case, we construct the following ε− invariant action3,

Sb(0,1) = 2
∫
d3x ∂3

∫
dθα−(γ

m)β αX̃
+
β Σ̃−m, (5.45)

= −2
∫
d3x ∂3(χ+λ− + χ+γ

m∂mχ+ + vmv
m), (5.46)

which added to the action (5.40), leads us to

Stotal(0,1) = SCS(0,1) + Sb(0,1),

=
∫
d3x (4εµνρvµ∂νvρ + λλ+ 2∂3(χ+γ

m∂mχ+ + vmv
m)) , (5.47)

=
∫
d3x

(
4εµνρvµ∂νvρ + λλ+ 2∂3(χ+γ

1∂+χ+ − v+v−)
)

. (5.48)

Here, as in the previous case, the linear term in λα no longer appears at the boundary and
a dynamical chiral fermion of opposite chirality emerges at the boundary. So, we expect
that Stotal(1,0) and S

total
(0,1) are connected by a time-reversal. In what follows, let us write the

actions in terms of the spinor components,

Stotal(1,0) =
∫
d3xLbulk − 2∂3(iχ2∂−χ2 + v+v−), (5.49)

Stotal(0,1) =
∫
d3xLbulk − 2∂3(iχ1∂+χ1 + v+v−), (5.50)

where Lbulk = 4εµνρvµ∂νvρ + λλ. Recall that Majorana spinors transform under a time-
reversal operation as [21]

T : ψα(x)→ ψTα (x) = (γ0)β αψβ(−x0, ~x), (5.51)

or in components

T : ψ1(x)→ ψ2(−x0, ~x) and ψ2(x)→ −ψ1(−x0, ~x), (5.52)

and also that the operation changes i → −i since it is anti-unitary. Thus, the action
(5.49),

Stotal(1,0) → (Stotal(1,0))
T =

∫
d3xLbulk − 2∂3(−iχ1(−x0, ~x)∂−χ1(−x0, ~x) + v+v−),

=
∫
d3xLbulk − 2∂3(iχ1(x0, ~x)∂+χ1(x0, ~x) + v+v−),

=
∫
d3xLbulk − 2∂3(iχ1∂+χ1 + v+v−), (5.53)

changes into (5.50) under a time-reversal operation, as stated above.
The boundary actions in (5.49) and (5.50) obtained from the N = (1, 0) and

N = (0, 1) half supersymmetry restoration, respectively, has only 1 gapless Majorana
chiral excitation, i.e.,

cR/L =
1
2. (5.54)

3 See Appendix A.
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Such edge structures appears in topological superconductors, so we are led to think that
this approach might be connected with the description of such topological phases [27].
In the next section, we will consider extended N = 2 supersymmetry. In this case, we
expect to find two dynamical chiral fermions at the boundary, of equal chirality as well as
of opposite chirality.

5.3 N = 2 Supersymmetry Conventions and Definitions
The 3D N = 2 superspace is realized by taking the Grassmann coordinates to be

complex. For convenience, we express these coordinates in terms of real N = 1 Grassmann
coordinates,

θα =
1√
2
(θ1α + iθ2α), θ̄α =

1√
2
(θ1α − iθ2α). (5.55)

The integration is defined as∫
d4θ =

∫
d2θd2θ̄ = −

∫
d2θ1d

2θ2. (5.56)

In the same way, the N = 2 superspace covariant deviratives,

Dα = ∂α + (γµθ̄)α∂µ, D̄α = ∂̄α + (γµθ)α∂µ, (5.57)

are decomposed as

Dα =
1√
2
(D1 − iD2), D̄α =

1√
2
(D1 + iD2), (5.58)

where Di is the usual N = 1 superspace covariant derivative (5.3), which satisfy the
algebra

{Diα,Djβ} = −2δijγµαβ∂µ. (5.59)

The main superfields of 3D N = 2 superspace are vector and quiral superfields. The
vector superfield V = V ∗ is defined as

V (x, θ1, θ2) = A(x, θ1) + θ2Γ(x, θ1) + θ2
2(B(x, θ1) +D2

1A(x, θ1)), (5.60)

where A(x, θ1) and B(x, θ1) are N = 1 scalar superfields and Γα(x, θ1) is a N = 1 spinor
superfield. The chiral superfield Φ is defined such that

D̄Φ = 0→ D2Φ = iD1Φ, (5.61)

and then be expressed as

Φ(x, θ1, θ2) = X(x, θ1) + iθ2D1X(x, θ1) + θ2
2D

2
1X(x, θ1), (5.62)

where X(x, θ1) is a complex N = 1 scalar superfield. Since all N = 2 objects were
decomposed into N = 1, we can simply look at the N = 1 superspace conventions and
definitions.
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5.3.1 N = 2 Supersymmetry with Boundary

Let us now consider extended N = 2 supersymmetry in the presence of a boundary.
We start with a general 3D N = 2 action

S =
∫
d3xd2θ1d

2θ2 L. (5.63)

Our goal is to generalize the procedure used in the previous section to restore half of the
supersymmetry. In this case, the action

S =
∫
d3x

(
d2θ1d

2θ2L+ d2θ1∂3L|θ2=0 ± d2θ2∂3L|θ1=0 ± ∂3∂3L|θ1=θ2=0
)

, (5.64)

preserves half of the supersymmetry (N = (2, 0) or N = (1, 1)) generated by ε1±Q1∓,
ε2+Q2−. On the other hand, the action

S =
∫
d3x

(
d2θ1d

2θ2L− d2θ1∂3L|θ2=0 ∓ d2θ2∂3L|θ1=0 ± ∂3∂3L|θ1=θ2=0
)

, (5.65)

preserves half of the supersymmetry (N = (0, 2) or N = (1, 1)) generated by ε1∓Q1±,
ε2−Q2+. As in the previous section, it might be convenient to add extra 2D supersymmetric
actions. In this case, such action can be constructed splitting 3D N = 2 superfields into
2D N = (2, 0), N = (0, 2) or N = (1, 1) superfields, details are summarized in Appendix
B.

5.4 Bulk-Edge Correspondence
The N = 2 Abelian Chern-Simons action is given by [15]

S0 = −
∫
d3xd2θd2θ̄V DαD̄αV =

∫
d3xd2θ1d

2θ2V (D
2
1 +D2

2)V , (5.66)

where V is the vector superfield, which can be written as

V = A(θ1) + θ2Γ + θ2
2(B(θ1) +D2

1A(θ1)), (5.67)

with components given by N = 1 superfields,

A = (a,ψα, f), B = (b, ηα, g), Γα = (χα,M , vµ,λα). (5.68)

In terms of the N = 1 superfields, the action (5.66) reads

S0 =
∫
d3xd2θ1(BB + Γαωα +

1
2D

α
1 (D1αBA−BD1αA)), (5.69)

where ωα is the gauge-invariant field strength (5.35). Notice that, in absence of boundaries,
this action differs from the action (5.33) by an auxiliary superfield. In components, it
reduces to

S0 =
∫
d3x(ηη− 2bg− 4εµνρvµ∂νvρ − λλ+ ∂µ(a∂

µb− b∂µa+ λγµχ+ ηγµψ)). (5.70)
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As in the N = 1 case, on a manifold with a boundary, the variation of the action under a
supersymmetry transformation does not vanish. To restore half of the supersymmetry, we
can apply the prescription (5.64) or (5.65). In both cases, we have to insert the following
actions,

S1 =
∫
d3xd2θ1∂3(V (D

2
1 +D2

2)V )|θ2=0 =
∫
d3x∂3(ag+ bf − ψη), (5.71)

S2 =
∫
d3xd2θ2∂3(V (D

2
1 +D2

2)V )|θ1=0 =
∫
d3x∂3(ag− bf + bb− χλ), (5.72)

S3 =
∫
d3x∂3∂3(V (D

2
1 +D2

2)V )|θ1=θ2=0 =
∫
d3x∂3(a∂3b+ b∂3a). (5.73)

So, applying the prescription (5.64), we form a N = (2, 0) action

SCS(2,0) = S0 + S1 + S2 + S3,

=
∫
d3x Lbulk + 2∂3(−λ+χ− − η+ψ− +

1
2bb+ a(g+ ∂3b)) (5.74)

and a N = (1, 1) action

SCS(1,1)∓ = S0 + S1 − S2 − S3,

=
∫
d3x Lbulk + 2∂3(λ−χ+ − η+ψ− −

1
2bb+ b(f − ∂3a)). (5.75)

Applying the prescription (5.65), we form a N = (0, 2) action

SCS(0,2) = S0 − S1 − S2 + S3,

=
∫
d3x Lbulk + 2∂3(λ−χ+ + η−ψ+ −

1
2bb− a(g− ∂3b)), (5.76)

and a N = (1, 1) action

SCS(1,1)± = S0 − S1 + S2 − S3,

=
∫
d3x Lbulk + 2∂3(−λ+χ− + η−ψ+ +

1
2bb− b(f + ∂3a)), (5.77)

where Lbulk = ηη−2bg−4εµνρvµ∂νvρ−λλ and the subscripts∓ and± indicates invariance
under (ε1−, ε2+) and (ε1+, ε2−) supersymmetry and differentiates the S(1,1) actions. In all
cases, the non-propagating fields λ±α and η±α appears linearly at the boundary. As in
the N = 1 case, to remove the couplings without imposing field boundary conditions, we
can separately add supersymmetric actions at the boundary. For the N = (2, 0) case, we
construct the following (ε1+, ε2+) invariant action4

Sb(2,0) = 2
∫
d3x ∂3

∫
dθ1+γ

mdθ2+
ˆ̂V ˆ̂Vm,

= 2
∫
d3x ∂3(ψ−η+ + χ−λ+ − ψ−γm∂mψ− − χ−γm∂mχ− − a(g+ ∂3b)

+ a∂m∂
ma− vmvm), (5.78)

4 See Appendix B.
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which added to the action (5.74), gives

Stotal(2,0) = SCS(2,0) + Sb(2,0),

=
∫
d3x Lbulk − 2∂3(ψ−γ

m∂mψ− + χ−γ
m∂mχ− + ∂ma∂

ma+ vmv
m − 1

2bb),

=
∫
d3x Lbulk + 2∂3(ψ−γ

1∂−ψ− + χ−γ
1∂−χ− + ∂+a∂−a+ v+v− +

1
2bb). (5.79)

The extra boundary action remove the couplings and produces two dynamical fermions of
the same chirality at the boundary. For the N = (1, 1) case, we construct the following
(ε1−, ε2+) invariant action5

Sb(1,1)∓ = 2
∫
d3x ∂3

∫
dθ1−dθ2+

˜̂Uα ˜̂Vα,

= 2
∫
d3x ∂3(χ+λ− + ψ−η+ − χ+γm∂mχ+ − ψ−γm∂mψ− − (f − ∂3a)

2

− b(f − ∂3a)− vmvm), (5.80)

which added to the action (5.75), gives

Stotal(1,1)∓ = SCS(1,1)∓ + Sb(1,1)∓,

=
∫
d3x Lbulk − 2∂3(−2χ+λ− + χ+γ

m∂mχ+ + ψ−γ
m∂mψ− + vmv

m

+ (f − ∂3a)
2 +

1
2bb),

=
∫
d3x Lbulk + 2∂3(2χ+λ− + χ+γ

1∂+χ+ − ψ−γ1∂−ψ− + v+v−

− (f − ∂3a)
2 − 1

2bb). (5.81)

Unlike the previous case, the extra boundary action removes only the term linear in η+α
and produces two dynamical fermions of opposite chirality. Motivated by the N = 1 case,
the Stotal(0,2) and S

total
(1,1)± actions, can be obtained by applying the time-reversal operation in

Stotal(2,0) and S
total
(1,1)∓, respectively. Firstly, let us write these actions in terms of the spinor

components,

Stotal(2,0) =
∫
d3x Lbulk + 2∂3(iψ2∂−ψ2 + iχ2∂−χ2 + ∂+a∂−a+ v+v− +

1
2bb),(5.82)

Stotal(1,1)∓ =
∫
d3x Lbulk + 2∂3(−2iχ1λ2 − iχ1∂+χ1 − iψ2∂−ψ2 + v+v− −

1
2bb

− (f − ∂3a)
2). (5.83)

So, by applying the transformation rules (5.52) in (5.82), we have

Stotal(2,0) → (Stotal(2,0))
T =

∫
d3x Lbulk + 2∂3(−iψ1(−x0, ~x)∂−ψ1(−x0, ~x)

− iχ1(−x0, ~x)∂−χ1(−x0, ~x) + ∂+a∂−a+ v+v− +
1
2bb),

=
∫
d3x Lbulk + 2∂3(iψ1(x0, ~x)∂+ψ1(x0, ~x)

+ iχ1(x0, ~x)∂+χ1(x0, ~x) + ∂+a∂−a+ v+v− +
1
2bb), (5.84)

5 See Appendix B.
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back to the compact notation, we find the Stotal(0,2) action

Stotal(0,2) =
∫
d3x Lbulk + 2∂3(−ψ+γ1∂+ψ+ − χ+γ1∂+χ+ + ∂+a∂−a+ v+v− +

1
2bb). (5.85)

Note that the Stotal(0,2) has two dynamical fermions of equal chirality, but opposite chirality
as the Stotal(2,0) action. In what follows, consider a Dirac spinor ϕ parameterized in terms of
the Majorana spinors χ and ψ,

ϕ = χ+ iψ. (5.86)

The action (5.82) written in terms of the Dirac spinor reads

Stotal(2,0) =
∫
d3x Lbulk + 2∂3(iϕ

†
2∂−ϕ2 + ∂+a∂−a+ v+v− +

1
2bb), (5.87)

i.e., now the theory has a dynamical chiral Dirac fermion at the boundary. Analogously,
the action (5.84),

Stotal(0,2) =
∫
d3x Lbulk + 2∂3(iϕ

†
1∂+ϕ1 + ∂+a∂−a+ v+v− +

1
2bb), (5.88)

also has a dynamical chiral Dirac fermion at the boundary.
The boundary actions in (5.87) and (5.88) obtained fromN = (2, 0) andN = (0, 2)

half supersymmetry restoration, respectively, has 1 gapless Dirac chiral excitation and
2 gapless bosonic chiral excitations, such that, effectively one has only 1 gapless chiral
excitation, i.e.,

cR/L = 1. (5.89)

So, the edge structures is similar to that obtained from gauge-invariance restoration, and
so we can think that such approach can also be useful to describe Abelian fractional
quantum Hall phases.

Similarly, by applying the transformation rules (5.52) in (5.83), we have

Stotal(1,1)∓ → (Stotal(1,1)∓)
T =

∫
d3x Lbulk + 2∂3(−2iχ2λ1 + iχ2(−x0, ~x)∂+χ2(−x0, ~x)

+ iψ1(−x0, ~x)∂−ψ1(−x0, ~x) + v+v− − (f − ∂3a)
2 − 1

2bb),

=
∫
d3x Lbulk + 2∂3(−2iχ2λ1 − iχ2(x0, ~x)∂−χ2(x0, ~x)

− iψ1(x0, ~x)∂+ψ1(x0, ~x) + v+v− − (f − ∂3a)
2 − 1

2bb), (5.90)

back to the compact notation, we find the Stotal(1,1)± action

Stotal(1,1)± =
∫
d3x Lbulk + 2∂3(−2χ−λ+ − χ−γ1∂−χ− + ψ+γ

1∂+ψ+

+ v+v− − (f − ∂3a)
2 − 1

2bb). (5.91)
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The Stotal(1,1) actions, at first, suggest an invariant system under time-reversal symmetry,
since we have two chiral fermions of opposite chirality at the edge, but a closer look shows
that this is not true, as there is also a mass term for one of the fermions. So, in both
cases, we have effectively only 1 gapless Majorana chiral excitation, i.e.,

cR/L =
1
2. (5.92)

such edge structures are similar to the N = (1, 0) and N = (0, 1) cases, and also can
describe topological superconductors.
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6 Final Considerations

As we have seen, in 2+1 space-time dimensions, the Chern-Simons theory is
responsible for both the statistical transmutation and the generation of mass to gauge
fields. In addition, the Chern-Simons theory is topological. The ground-state degeneracy
depends on the genus of the manifold upon which it is defined. One of the most remarkable
feature of this theory arises on a manifold with physical boundaries. The restoration of
gauge symmetry and supersymmetry leads to the emergence of physical excitations at the
edge. Such property is called holography and leads to the bulk-edge correspondence.

The restoration of the gauge symmetry gives rise to the emergence of dynamical
chiral bosons at the boundary, which are connected to the description of Quantum Hall
states [9]. On the other hand, the restoration of N = (1, 0) or N = (0, 1) supersymmetry
leads to the emergence of one dynamical Majorana chiral fermion at the boundary. In the
first case, one has a right-handed fermion, while in the second case, a left-handed fermion.
Such fermions are connected by a time-reversal operation. Since the edge theory in these
cases is described by Majorana chiral fermions, we are led to think that such theories may
be connected with topological superconductors descriptions [27].

In the same way, the restoration of N = (2, 0) or N = (0, 2) supersymmetry leads
to the emergence of two dynamical Majorana fermions at the boundary. Since we can
think the supersymmetry N = (2, 0) as a combination of two N = (1, 0) supersymmetries,
in this case, we have two right-handed fermions, while in the other case, two left-handed
fermions. In both cases, we can combine the Majorana fermions into a single Dirac fermion,
which under bosonization are lead to chiral bosons, such that the edge theories suggest
also a connection with the description of Quantum Hall states. On the other hand, the
restoration of the N = (1, 1) supersymmetries leads to the emergence of two dynamical
Majorana fermions of opposite chirality at the boundary, and naively we could think of
an edge theory with time-reversal symmetry, but the presence of a mass term for one of
them makes this impossible. So, in both cases, we have effectively only one dynamical
fermion at the boundary, such that the gapless content of the edge theories are similar to
the N = (1, 0) and N = (0, 1) cases.

The future goals include deepening the subject of edge theories, especially in the
context of supersymmetries, in order to make a concrete connection with the edge states
of topological phases of matter. For example, a possibility of obtaining a system with
time-reversal symmetry, and thus obtaining an edge theory with the potential to describe
topological insulators, would be to consider BF theories in the bulk, subject to N = 4
supersymmetry constraint, in such way that two chiral Dirac fermions of opposite chirality
and no mass terms would emerge at the boundary [28]. In addition, we would like to
generalize our discussion for the non-Abelian case. Since its discovery in the context of
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the quantum Hall effect, the interest in non-Abelian phases of matter has been intensified
with the discovery of several topological ordered phases possessing non-Abelian anyonic
excitations and, in particular, because of the potential applications in quantum computing
[29, 30]. So, it would be interesting to explore the bulk-edge correspondence also in
non-Abelian supersymmetric Chern-Simons theories.
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A Appendix: N = 1 to N = (1, 0) or
N = (0, 1) Multiplet Decomposition

Multiplet decomposition is a systematically procedure in which we decompose the
3D superfields Φ and Γα into 2D N = (1, 0) and N = (0, 1) superfields transforming
under ε+ and ε− supersymmetry, respectively. To this end, we first introduce the projectors

P± =
1
2(1± γ

3), (A.1)

and write the supercharges (5.3) as

Q± = Q′± ∓ θ±∂3 = e±θ+θ−∂3Q′±e
∓θ+θ−∂3 , (A.2)

where

Q′±α = ∂±α − (γmθ∓)α∂m, ∂±α ≡
∂

∂θα∓
, θ± ≡ P±θ (A.3)

The bulk supercharges, Q±, are the generators of ε∓ supersymmetry transformations on
3D N = 1 superfields

δ±Φ = ε±Q∓Φ and δ±Γα = ε±Q∓Γα. (A.4)

The boundary supercharges, Q′±, has the same form as (5.3). Thus, Q′− can be viewed as
the generator of ε+ supersymmetry transformation on 2D N = (1, 0) superfields, labeled
by a hat,

δ+Φ̂ = ε+Q
′
−Φ̂ and δ+Γ̂α = ε+Q

′
−Γ̂α, (A.5)

and Q′+ as the generator of ε− supersymmetry transformation on 2D N = (0, 1) superfields,
labeled by a tilde,

δ−Φ̃ = ε−Q
′
+Φ̃ and δ−Γ̃α = ε−Q

′
+Γ̃α. (A.6)

Since the bulk and boundary supercharges are related by (A.2), a close look at all the
above supersymmetry transformations suggests also a relation between bulk and boundary
superfields. In fact, by inserting (A.2) into the transformations (A.5) and (A.6), we find
that Φ̂ and Φ̃ are related to Φ as

Φ = e−θ+θ−∂3Φ̂ and Φ = e+θ+θ−∂3Φ̃, (A.7)

as well as Γ̂α and Γ̃α are related to Γα as

Γα = e−θ+θ−∂3 Γ̂α and Γα = e+θ+θ−∂3 Γ̃α. (A.8)
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Writing the scalar superfields in terms of the projected coordinate θ±,

Φ = A+ θ+ψ− + θ−ψ+ + θ+θ−F , (A.9)

Φ̂ = Â(θ+) + θ−Â+(θ+), (A.10)

Φ̃ = Ã(θ−) + θ+Ã−(θ−), (A.11)

and inserting them into the relation (A.7), we find the 2D N = (1, 0) and N = (0, 1)
superfields advents from the 3D N = 1 scalar superfield Φ,

Â = A+ θ+ψ−, (A.12)

Â+ = ψ+ + θ+(F + ∂3A), (A.13)

Ã− = ψ− + θ−(F − ∂3A), (A.14)

Ã = A+ θ−ψ+. (A.15)

The ε± supersymmetry transformation of these superfield components is

δA = ε±ψ∓, δψ∓ = γmε±∂mA,

δψ± = (F ± ∂3A)ε±, δ(F ± ∂3A) = ε±γ
m∂mψ±. (A.16)

Similarly, writing the spinor superfields in terms of the projected coordinate θ±,

Γ±α = χ±α + θ±αM + (γmθ∓)αvm ± θ±v3 + θ+θ−{λ± − [(γm∂mχ∓)± ∂3χ±]}α,(A.17)

Γ̂+
α = X̂+

α (θ+)− θ
β
+(γ

m)βαΣ̂+
m(θ+), (A.18)

Γ̂−α = X̂−α (θ+) + θ−αΣ̂−(θ+), (A.19)

Γ̃+
α = X̃+

α (θ−) + θ+αΣ̃+(θ−), (A.20)

Γ̃−α = X̃−α (θ−)− θ
β
−(γ

m)βαΣ̃−m(θ−), (A.21)

and inserting them into the relation (A.8), we find the 2D N = (1, 0) and N = (0, 1)
superfields advents from the 3D N = 1 spinor superfield Γα,

X̂+
α = χ+α + θ+α(M + v3), (A.22)

Σ̂+
m = vm − θα+(

1
2(γmλ+)α − ∂mχ−α), (A.23)

X̂−α = χ−α + (γmθ+)αvm, (A.24)

Σ̂− = (M − v3)− θα+(λ−α + 2∂3χ−α − (γm∂mχ+)α), (A.25)

X̃−α = χ−α + θ−α(M − v3), (A.26)

Σ̃−m = vm − θα−(
1
2(γmλ−)α − ∂mχ+α), (A.27)

X̃+
α = χ+α + (γmθ−)αvm, (A.28)

Σ̃+ = (M + v3)− θα−(λ+α − 2∂3χ+α − (γm∂mχ−)α). (A.29)
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Finally, the ε± supersymmetry transformation for these superfield components is

δχ± = ε±(M ± v3), δ(M ± v3) = ε±γ
m∂mχ±,

δv3 = ε±(
1
2λ∓ + ∂3χ∓), δ(1

2λ∓ + ∂3χ∓) = γmε±∂mv3, (A.30)

δχ∓ = γmε±vm, δvm = −1
2ε±γmλ± + ε±∂mχ∓, δλ± = −2εmnoγo∂mvnε±.
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B Appendix: N = 2 to N = (2, 0) or
N = (1, 1) Multiplet Decomposition

Here, we will show how to decompose the 3D N = 2 vector field V into 2D N =

(2, 0) and N = (1, 1) superfields. Firstly, note that the N = (2, 0) half supersymmetry is a
combination of two N = (1, 0) half supersymmetries, generated by (Q′1−,Q′2−). Similarly,
the N = (1, 1) half supersymmetry is a combination of N = (0, 1) and N = (1, 0)
half supersymmetries, generated by (Q′1+,Q′2−). According to (A.2), these boundary
supercharges are related to the bulk supercharges (Q1±,Q2−), as

Q1± = Q′1± ∓ θ1±∂3 = e±θ1+θ1−∂3Q′1±e
∓θ1+θ1−∂3 , (B.1)

Q2− = Q′2− + θ2−∂3 = e−θ2+θ2−∂3Q′2−e
+θ2+θ2−∂3 . (B.2)

Starting with the 3D N = 2 vector superfield (5.60)

V = A(θ1) + θ2Γ + θ2
2(B(θ1) +D2

1A(θ1)), (B.3)

where

A = (a,ψα, f), B = (b, ηα, g), Γα = (χα,M , vµ,λα), (B.4)

we can simply follow the procedures in Appendix A to construct the boundary superfields.
The 2D N = (2, 0) superfields are related to V as

V = e−θ2+θ2−∂3e−θ1+θ1−∂3( ˆ̂V (θ1+, θ2+) + θα1−
ˆ̂Vα + θα2−

ˆ̂Uα + θα2−(γ
mθ1−)α

ˆ̂Vm), (B.5)

and the 2D N = (1, 1) superfields as

V = e−θ2+θ2−∂3e+θ1+θ1−∂3( ˜̂V (θ1−, θ2+) + θα1+
˜̂Vα + θα2−

˜̂Uα + θα2−θ1+α
˜̂U). (B.6)

The (θ1±, θ2±) expansion of the bulk vector superfield is

V = a+ θ1+ψ− + θ1−ψ+ + θ1+θ1−f + θ2+ [χ− + θ1−(M − v3) + (γmθ1+)vm

+ θ1+θ1−(λ− − γm∂mχ+ + ∂3χ−)] + θ2−[χ+ + θ1+(M + v3) + (γmθ1−)vm

+ θ1+θ1−(λ+ − γm∂mχ− − ∂3χ+)] + θ2+θ2−[(b− f) + θ1+(η− − γm∂mψ+
+ ∂3ψ−) + θ1−(η+ − γm∂mψ− − ∂3ψ+) + θ1+θ1−(g− ∂m∂ma− ∂3∂

3a)]. (B.7)
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So, back to (B.5) and (B.6), we find that the N = (2, 0) and N = (1, 1) boundary
superfields are

ˆ̂V = a+ θ1+ψ− + θ2+χ− + θ2+(γ
mθ1+)vm, (B.8)

ˆ̂Vα = ψ+α + θ1+α(f + ∂3a) + θ2+α(M − v3) + θ1+αθ2+(λ− − γm∂mχ+ + 2∂3χ−),(B.9)
ˆ̂Uα = χ+α + θ1+α(M + v3) + θ2+α(b− f + ∂3a)

+ θ2+αθ1+(η− − γm∂mψ+ + 2∂3ψ−), (B.10)
ˆ̂Vm = vm + θ1+(

1
2γmλ+ − ∂mχ−) + θ2+(

1
2γmη+ − ∂mψ−)

+
1
2(θ2+γmθ1+)(g− ∂m∂ma+ ∂3b), (B.11)

˜̂V = a+ θ1−ψ+ + θ2+χ− + θ2+θ1−(M − v3), (B.12)
˜̂Vα = ψ−α + θ1−α(f − ∂3a) + (θ2+γ

m)αvm + θ1−αθ2+(λ− − γm∂mχ+), (B.13)
˜̂Uα = χ+α + (γmθ1−)αvm + θ2+α(b− f + ∂3a) + θ2+αθ1−(η+ − γm∂mψ−), (B.14)
˜̂U = (M + v3) + θ1−(λ+ − γm∂mχ− − 2∂3χ+) + θ2+(η− − γm∂mψ+ + 2∂3ψ−)

+ θ2+θ1−(g− ∂m∂ma− 2∂3∂3a− ∂3b+ 2f). (B.15)
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