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CORSO, Rodrigo. Dualidades em Teorias de Campos em (2+1) Dimensões 2019. 51. Tra-
balho de Conclusão de Curso (Mestrado em Física) – Universidade Estadual de Londrina, Lon-
drina, 2019.

RESUMO

Neste trabalho analisamos a dualidade entre o limite de baixas energias do modelo de Thirring
e a teoria de Maxwell-Chern-Simons. Isto é feito introduzindo um campo vetorial que elimina
a interação quártica de Thirring e integrando os graus de liberdade fermiônicos. Também in-
vestigamos uma série de dualidades, que podem ser obtidas a partir de operações simples na
dualidade de bosonização mestre. Com este método obtemos outra dualidade bóson-férmion e
duas dualidades partícula-vórtice, uma para bósons e outra para férmions. Também discutimos
uma maneira de obter dualidades massivas a partir da dualidade mestre.

Palavras-chave: Bosonização. Teoria Quântica de Campos. Dualidades.



CORSO, Rodrigo. Dualities in (2 + 1) Dimensional Quantum Field Theory 2018. 51.
Masters Degree Dissertation – Universidade Estadual de Londrina, Londrina, 2019.

ABSTRACT

In this work we analyze the duality between the low energy limit of the Thirring model and
the Maxwell-Chern-Simons theory. This is done by introducing a gauge field to eliminate the
quartic Thirring interaction and integrating out the fermionic degrees of freedom. We also in-
vestigate a series of dualities, which can be obtained by simple operations from a master boson-
fermion duality. We obtain another boson-fermion duality and two particle-vortex duality, one
for fermions and one for bosons. We also discuss a way to give mass to the master duality and
derive a series of massive dualities.

Keywords: Bosonization. Quantum Field Theory. Dualities.
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1 INTRODUCTION

Many quantum field theories present the remarkable property to be dual to
another one. This has proven to be specially useful when one of the theories can be exactly
solved, allowing us to draw conclusions from a theory that we previously could not solve. One
of the earliest known duality is between the Sine-Gordon and the Thirring theories in (1+1)
space-time dimensions [1, 2, 3]. This is also an exact duality, thus we have an exact relation
between the fermionic and bosonic fields. As this duality relates two theories with different
statistics it is called a bosonization duality.

In (2+1) space-time dimensions things are more subtle as bosonization dua-
lities involve distinct mechanisms. This can be checked by counting the number of degrees of
freedom in each theory. In (2+1) dimensions the spinor has two complex components and the
scalar field has one complex component, thus we should not expect to obtain an exact duality
without the addition of another degree of freedom. We usually find a duality in the low-energy
limit, where one of the degrees of freedom of the spinor is suppressed, or a duality that involves
a scalar, a fermion and a gauge field.

The first suggestions of the existence of boson-fermion dualities came to light
in the study of the motion of quantum particles in (2+1) dimensions. The conclusion of such
studies was that the particles could have any statistics, not only bosons and fermions. Such
particles were called anyons. The way to implement the transmutation of quantum numbers in
a quantum field theory is through a Chern-Simons term. As we will see, this term will be of
great relevance to our work. One place where this term is of seminal importance is in the study
of the quantum Hall effect, where an effective theory in terms of the Chern-Simons allowed the
explanation of fractional filling fraction, statistics and a series of other interesting effects.

Beyond that we also find that an odd number of fluxes transmutes the statistics
of a particle from fermion to boson and vice-versa [4, 5]. Further support to the bosonization
dualities comes from [6], where we find that a monopole operator also changes the spin of
a particle in a way that is compatible with the statistics transmutation. This motivated the
search of explicit dualities between two different theories [7, 8, 9]. These dualities relate a
free fermion to an interacting boson, or vice-versa. Thus the duality states that the interacting
theories behaves like a free theory, but with the statistics changed. Again the Chern-Simons
term is responsible for the transmutation from bosons to fermions.

One of the dualities we find is the original one by Peskin, between the XY
model and the Abelian Higgs model, but with a field theory approach. We also show a particle-
vortex duality between the free massless fermion and the (2+1) dimensional QED. This duality
has been especially useful in the understanding of condensed matter systems, as the quantum
Hall effect [10], superconductors [11] and topological insulators [12, 13] among many other
applications.
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This work is mostly of review character, where we discuss some well known
facts about 3D quantum field theory, papers of great recent interest and also fill some gaps with
discussions not present in the literature. It is organized as follows. In the second chapter we
study the transmutation of spin and statistics in particles in (2+1) space-time dimensions. In the
third chapter we study the duality between the Thirring model and the Maxwell-Chern-Simons
theory. These two chapters provide the basic elements to, in the fourth chapter, investigate a
bosonization duality as well as a series of relations that follow from it. This group of relations
is called web of dualities. In the fifth chapter we extend the dualities discussed in the third
chapter to include the massive case. We conclude the work with some final remarks. Subsidiary
calculations are carried out in the final remarks.
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2 SPIN-STATISTICS TRANSMUTATION

In this we chapter discuss how a monopole operator or the Chern-Simons term
can promote the change of quantum numbers, like spin, statistics and Lorentz spin. To do so we
also study some general aspects of monopole operators, the Chern-Simons action and the state-
operator map in conformal field theory. This will be a motivation to, in the future, introduce a
duality between a boson and a fermion partition functions, which is the main focus of this work.

2.1 STATISTICS

In (2 + 1) dimensional field theory the spin is associated with the SO(2)

group, which has no non-trivial commutation relation, as it is an Abelian group. This can easily
checked if we think of the SO(2) group as a representation of the group of rotations around a
fixed axis. Thus we do not expect to obtain any restriction on the spin of particles. By the spin-
statistics theorem we also do not expect to find any limitation on the statistics of such particles,
which are called anyons. We shall investigate these aspects from now on.

Let us assume that we have the wave function of a pair of non-interacting
particles, except for a hard-core repulsion. If we rotate one particle around the other we do
not expect the probability density to change as they are identical particles and we assume the
system to be rotational invariant. Thus the wave function of these particles can change, at the
most, by a phase factor. It is natural to assume that the phase depends on the angle of rotation,
thus we write

ψ′(1, 2) = eiν∆θψ(1, 2), (2.1)

where ν is an unknown constant, which we call the statistics parameter.
As we know from quantum mechanics, to compute the particle’s statistics we

must exchange the particles and check the phase that the wave function picks. This can be
accomplished by rotating one particle around the other by an angle of ∆θ = π or ∆θ = −π

ψ(1, 2)→ ψ(2, 1) = eiνπψ(1, 2) or ψ(2, 1) = e−iνπψ(1, 2). (2.2)

In three or more spacial dimensions we can deform one path into the other,
even with hard-core interaction, as we have an extra dimension to go around the particle. This
is equivalent to saying that both paths in the figure 2.1 are equivalent, and that the negative
and positive phases in the equation (2.2) must be the same i.e., eiνπ = e−iνπ. This restricts
the statistics parameter in such dimensions to even ν, corresponding to bosons with symmetric
wave function and to odd ν for fermions with anti-symmetric wave function.

In two spacial dimensions these paths are not equivalent, as we can not deform
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one path into the other because of the hard-core repulsion. By this argument the two ways we
wrote ψ(2, 1) in the equation (2.2) are not equivalent. Thus, in two spacial dimensions there are
no limitations to the statistics parameter of a particle ν.

Figura 2.1: Transport of one particle around the other

Now we would like to incorporate this effect in a local quantum field theory,
because this will be important for our purposes in the remaining of the work . The way to
implement statistics transmutation into a particle is through a Chern-Simons term

SCS[a] =
k

4π

∫
d3x εµνσaµ∂νaσ, (2.3)

where k is called the Chern-Simons level. The Chern-Simons term is of great relevance to
many areas of physics. One of these fields of study is the Quantum Hall Effect, where the
Chern-Simons action is considered the effective action emerging from the interaction of the
large number of strongly coupled electrons. A good review on the subject can be found in [14].
Another noteworthy property is that the Chern-Simons term is topological, that is, its form does
not vary with the metric of the manifold in which it is inserted.

One important aspect of the Chern-Simons action is the quantization of the
level k. We can see this by placing the theory in a manifold S2 × R, in the presence of a
magnetic monopole with a Dirac quantization condition

1

2π

∫
d2x f12 = Z, (2.4)

where d2x is the integration over spacial S2 and f12 is the component of the field strength
corresponding to the magnetic field. For convenience we work on a compact Euclidean time τ ,
such that τ ∈ [0, β], where we consider a large gauge transformations

Λ = 2π
τ

β
. (2.5)

This can be thought as a finite temperature system. Under these gauge transformation only the
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temporal component of the gauge field undergoes a transformation, a′0 = a0 + 2π
β

.
Now we rewrite the Chern-Simons action as

SCS[a] =
k

4π

∫
d3x (a0f12 + a2f01 + a1f20) . (2.6)

We leave the first term as it is and rewrite the second and third terms in terms of a

a2(∂0a1 − ∂1a0) + a1(∂2a0 − ∂0a2). (2.7)

We integrate by parts the terms that contain a0 and leave the others. The upshot is that when
we consider gauge transformations of the form (2.5) the first term in the equation (2.6) can be
multiplied by a factor of two and the others can be ignored. After this procedure it is easy to
see that the change of the Chern-Simons action under large gauge transformations reads

δSCS =
k

2π

∫
d3x

2π

β
f12

=
k

2π
2π

∫
d2x f12

= 2πk Z. (2.8)

Here we integrated x0 and used the Dirac quantization condition, equation (2.4). Although the
action is not gauge invariant we can still define a quantum field theory, given in terms of eiSCS [a],
which is invariant if k is an integer. Thus the Chern-Simons partition function is gauge invariant
if the Chern-Simons level is an integer.

To show how a particle transmutes its statistics we add to the Lagrangian a
kinetic term of a set of particles and couple them to the Chern-Simons field through the minimal
coupling. The complete action reads

S =

∫
d3x

[
k

4π
εµνσaµ∂νaσ − jµaµ

]
+

∫
dt

N∑
I

1

2
m~v2

I (2.9)

=
k

4π

∫
d3x εµνσaµ∂νaσ +

∫
dt

N∑
I

[
1

2
m~v2

I + e~vI · ~a− ea0

]
, (2.10)

where jµ = (ρ,~j) is the Minkowsky current given by

ρ(x) =
N∑
I

eδ(2) (~x− ~rI(t))

~j(x) =
N∑
I

e~vI(t)δ
(2) (~x− ~rI(t)) . (2.11)

We take the equations of motion of the vector potential a and of the particle.
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The equation of motion for the particle reads

mv̇iI = e
(
Ei (rI) + εijvjIB (rI)

)
, (2.12)

while the equation of motion for aµ is

kεµνσ∂νaσ = 2πjµ. (2.13)

In terms of the components,

B = −2π

k
ρ and Ei =

2π

k
εijjj, (2.14)

where Ei and B are the electrical and magnetic fields that can be obtained from Ei = −∂0a
i −

∂ia0 and B = εij∂iaj .
The equation of motion for the magnetic field allows us to calculate the flux

over a small region around a single particle I

ΦI =

∫
I

d2xB = −2πe

k

∫
I

d2x
N∑
J=1

δ(2) (x− rJ) = −2πe

k
. (2.15)

We see that the coupling to a Chern-Simons term attaches a magnetic flux to all charged parti-
cles.

In conjunction with the explicit form of the currents, equation (2.11), the
equations of motion for the vector potential, equation (2.14), allows us to find an explicit form
for the vector potential

aiI(~r1, · · · , ~rN) =
e

k

∑
I 6=J

εij
(
rjI − r

j
J

)
|~rI − ~rJ |2

, (2.16)

in the gauge where ∂iai. The subindex I designates that this is the potential of felt by the particle
I . This vector potential produces the magnetic field

BI(~r1, · · · , ~rN) = −2πe

k

∑
I 6=J

δ(2) (~rI − ~rJ) . (2.17)

Now that we have an explicit form the magnetic field we can find the statistics
parameter. We do this by transporting adiabatically one particle around the other and checking
the phase that the wave function picks under this operation.The Aharonov-Bohm pase is

exp−iq
∮

d~r · ~a = exp−iq
∫

d2xB, (2.18)

where q is the Noether charge under U(1) gauge transformation. Calculating the Noether con-
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served charge under U(1) for the action (2.9) we find q = e
2
. The discrepancy with the expected

result, q = e, is due to the coupling to the Chern-Simons term. If we were to develop the same
theory with the Maxwell term in place of the Chern-Simons, we would find the expected result,
q = e. A detailed calculation can be found in [15].

Now we are able to calculate the Aharonov-Bohm phase using the magnetic
field given by the equation (2.17)

exp−iq
∫

d2xB = exp
πie2

k
. (2.19)

By comparing with equation (2.2), we identify the statistics parameter as

ν =
e2

k
. (2.20)

With this we learn that the addition of a Chern-Simons term to the action can make the statis-
tics of the system fractional, as the Chern-Simons level is quantized. This result is similar to
what can happen in strongly coupled system where fractional statistics can be experimentally
observed. One of these systems is the quantum Hall effect [16].

2.2 LORENTZ SPIN

In this section we wish to work in the Euclidean (2 + 1) space, or R3. The
rotation group is the SO(3). As we know this group is non-Abelian, thus we expect to find
restrictions on the Lorentz spin of particles. Here we will study how a monopole operator can
transmute the Lorentz spin of a boson to a fermion and vice-versa. It is not easy to study
how a monopole operator does this in a quantum field theory. In contrast, in a conformal field
theory it is possible to circumvent this difficulty by using a state-operator map, which allows
us to study monopole operators in a quantum mechanics setting. This correspondence relates
fields (operators) in R3 to wave functions (states) in S2 × R, where R is the time direction. For
completeness we give a hint at how this formalism works before we start with our study.

The maps between the two spaces can be achieved by taking the metric for
R3,

ds2
R3 = dr2 + r2 ds2

S2 , (2.21)

and making the conformal transformation r = eτ . It is easy to check that the result is the metric
for S2 × R up to a conformal factor e2τ , i.e.

ds2
R3 = e2τ ds2

S2×R . (2.22)

With this it is easy to see that the infinite past, τ → −∞, corresponds to the the point r = 0.
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Thus a monopole operator inserted at the origin in a conformal field theory can be studied by
considering asymptotic states in S2 × R

Now we show precisely how to define the map between states and operators.
It is a well known fact that in quantum mechanics the wave function is defined by projecting a
state, |ψ, t〉, in a coordinate basis, |~x〉, i.e.

ψ(~x, t) = 〈~x|ψ, t〉 . (2.23)

We want to build an analogous object in quantum field theory. We introduce a basis that diago-
nalize the field operator φ̂(~x) |φ(~x)〉 = φ(~x) |φ(~x)〉. We define a state as

Ψ [φ(~x), t] ≡ 〈φ(~x)|ψ, t〉 . (2.24)

Note that the state we defined is an object fixed in time but defined in the entire space, in contrast
to as operator, O [φ(~x)], that is defined in a fixed position in space-time.

The connection can be achieved when we project the equation for time evolu-
tion of the state,

|ψ, t〉 = U(t, 0) |ψ, 0〉 , (2.25)

into the basis that diagonalize the field operator. By introducing a completeness relation we
obtain

Ψ [φf (~x), τf ] =

∫
Dφi

∫ φ(τf )=φf

φ(τi)=φi

Dφ Ψ [φi(~x), τi] e
−S[φ], (2.26)

written in the Euclidean. Under the conformal transformation r = eτ , this equation becomes

Ψ [φf (~x), rf ] =

∫
Dφi

∫ φ(rf )=φf

φ(ri)=φi

Dφ Ψ [φi(~x), ri] e
−S[φ], (2.27)

where the integration is carried over the region between two concentric spheres of radius ri
and rf . The path integrals are calculated first with a fixed starting and ending points, and then
summing over all starting points. This is equivalent to taking all the path integrals with a fixed
ending point. Then we consider r = 0 and obtain

Ψ [φf , rf ] =

∫ φ(rf )=φf

DφΨ [φ(0), 0] e−S[φ]. (2.28)

Now the map is manifest. We interpret the functional Ψ[φ(0), 0] as a local operator in the path
integral language and Ψ [φf , rf ] as the state.



16

2.2.1 Monopole Operators in R3

In this section we discuss some basic aspects of monopole operators. Before
we begin our discussion we must introduce the concept of a section and indicate why it is useful.
In the absence of a monopole the equation ~∇ ·

(
~∇× ~A

)
= 0 is true and states that the total

flux of the magnetic field vanishes. But in the presence of a monopole this equality is no longer
true at one point on every closed surface surrounding the monopole, making the magnetic flux
over a closed surface not zero. This can be achieved by letting ~A be divergent in one point in
every closed surface around the monopole, the connection of all of these points is called a Dirac
string, see figure 2.2 [17, 18].

Figura 2.2: Dirac string emanating from the monopole

In order to avoid the string we define two overlapping vector potentials, in a
way that the strings are never in the domain of the potential. One possible choice is [19]

A±r = A±θ = 0, A±φ =
g

r sin θ
(±1− cos θ), (2.29)

where g is the monopole strength. Here the plus and minus sign represent the north and south
caps, respectively. This vector potential produces the magnetic field

~B =
g

r2
r̂ for r 6= 0. (2.30)

This has the same behaviour as the electric field for a charged particle. We can verify that
this magnetic field is generated by a monopole using the equivalent of the Gauss law for the
magnetic field in the presence of magnetic particles

~∇ · ~B = ρm = 4πgδ(3)(r). (2.31)

The right-hand-side clearly describes a magnetic monopole at the origin.
As the two potentials are connected by a gauge transformation, they describe



17

the same magnetic field.

~A+ = ~A− +
1

eZ
~∇α(x), (2.32)

where α(x) = 2qφ and eZ is the charge of the particle. The number q characterizes the section.
It is connected to the monopole strength in Dirac’s unit, D ≡ 2eg, by the relation q = DZ/2.
As D and Z are integer, so is 2q.The gauge transformation can be easily checked substituting
the equation (2.29) into the one above

~A− +
1

eZ
~∇α(x) =

g

r sin θ
(−1− cos θ) φ̂+

1

eZ

1

r sin θ
∂φ(2qφ)φ̂

=
g

r sin θ
(−1− cos θ) φ̂+

2q

eZr sin θ
φ̂ =

g

r sin θ
(−1− cos θ) φ̂+

2g

r sin θ
φ̂

~A− +
1

eZ
~∇α(x) = ~A+ (2.33)

Under gauge transformations the wave function undergoes the usual U(1) transformation

ψ+ = eiα(x)ψ−. (2.34)

The way the wave function transforms is what defines a section. A section is a function that
has different definitions on different domains. In our case we have ψ+ and ψ− for the north and
south caps of the sphere, respectively.

2.2.2 Scalar Particles

In this subsection and the next we will study how particles behave in the pre-
sence of a monopole. Here the particles will be described by wave functions and the monopole
operator by a magnetic flux. It is important to remember that it is possible to return to a field
theory description using the state-operator map we discussed in the beginning of this section.
Using this mechanism, we are able to map the wave functions back into fields (operators) and
the magnetic flux into a monopole operator.

Now that we understand how to work with a magnetic monopole we are able
to understand how the monopole changes the spin of a scalar field. The presence of the mono-
pole induces the non-trivial commutation relation [20]

[πi, πj] = −iεijk e
c
Bk(x), (2.35)

where ~π = ~p− e ~A. The angular momentum which is conserved and satisfies the usual commu-
tation relation, [Li, Lj] = iεijkLk, involves an additional term

~L = ~r × ~π − q~r
r
. (2.36)
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Alternatively, we could find this angular momentum starting from the action of a particle cou-
pled to the gauge field plus the Maxwell term and build the angular momentum using the No-
ether theorem. The only non-trivial part is that we must choose the field configuration corres-
ponding to a monopole.

As usual, the operators ~L2 and Lz can be diagonalized simultaneously. Here
it is important to note that we have an additional quantum number q in the spherical harmonics
to differentiate the section.

~L2Yq,l,m = l(l + 1)Yq,l,m; LzYq,l,m = mYq,l,m. (2.37)

One can solve the second equation to find the φ dependence and then impose L−Yq,l,−l = 0 to
obtain

Y ±q,l,−l =

[
(2l + 1)!

4π22l(l − q)!(l + q)!

] 1
2 √

1− cos θ
l−q√

1 + cos θ
l+q
eiφ(m±q). (2.38)

The other Y ±q,l,m(θ) can be found applying L+ to Y ±q,l,−l, where L± = Lx ± iLy.
We impose that the sections Y ±q,l,−l must be single valued and obtain m± q ∈

Z. This means that q and m must be integer or half integer. The wave function is ill defined for
l < |q| , thus we restrict the wave function to l ≥ |q|. Therefore the possible eigenvalues are

l = |q|, |q|+ 1, |q|+ 2 · · · m = −l,−l + 1 · · · , l (2.39)

The only angular momentum we can measure is the orbital angular momen-
tum, thus it must be the total angular momentum. As the minimum eigenvalue of the angular
momentum is |q|, it also behaves as the spin of the system composed by monopole plus the sca-
lar particle. Because q is integer or half integer, this is equivalent to saying that the monopole
transmutes the spin of the particle. Furthermore, we also know that the scalar wave function has
no spin content, thus q must be the monopole’s spin.

2.2.3 Fermions

Now we wish to repeat the same argument for fermions with spin 1
2
. In order

to do so, we must diagonalize ~J2, ~L2 and Jz. For spin 1
2

the total angular momentum is given
by

~J = ~L+
~σ

2
, (2.40)
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such that ~σ are the Pauli matrices and ~L is given by the equation (2.37). The eigenfunctions of
~J2, ~L2 and Jz operators are [6]

φ±j,l,mj =

 √
l+m+1

2l+1
Y ±q,l,m√

l−m
2l+1

Y ±q,l,m+1

 for j = l +
1

2
, mj = m+

1

2
; (2.41)

φ±j,l,mj =

 −
√

l−m
2l+1

Y ±q,l,m√
l+m+1

2l+1
Y ±q,l,m+1

 for j = l − 1

2
, mj = m+

1

2
. (2.42)

In this way

~J2φj,l,mj = j(j + 1)φj,l,mj ,
~L2φj,l,mj = l(l + 1)φj,l,mj and Jzφj,l,mj = mjφj,l,mj . (2.43)

The quantum numbers l and m obey the same relations as before

l = |q|, |q|+ 1 · · · ; m = −l, · · · , l − 1, l, (2.44)

and, to avoid divergences on Yq,l,m, the total angular momentum eigenvalue j obeys

j = |q| − 1

2
, |q|+ 1

2
, |q|+ 3

2
, · · · . (2.45)

It is important to note that for q = l = 0 the second spinor is not allowed because it would lead
to j = −1

2

The presence of a monopole leads to the same consequences on spinors as
on scalars. For half-integer q, j assumes integer values, thus the system monopole plus spinor
behaves like a boson. For integer q the system behaves like a fermion. Just like in the scalar
case it follows that the monopole transmutes the spin of the spinor. Furthermore, we know that
the spinor has 1

2
spin, hence the monopoles’s spin is q.

For completeness we will find the energy spectrum in the quantum theory.
Under the variable change the Dirac Lagrangian reads

LS2×R = iψ̄σr

(
∂

∂τ
−
(
~J2 − ~L2 +

1

4

)
− qσr

)
ψ. (2.46)

We write the wave function as ψ =
∑
l,jmj

Rl,j,mj(τ)φl,j,mj(θ, φ) and find the radial part equation.

It is important to remember that, as we are in a radial quantization scheme, R(τ) is the time
dependence of the wave function

dRljmj(τ)

dτ
−
(
j(j + 1)− l(l + 1) +

1

4

)
Rljmj(τ)−

∑
l′j′m′j

qRl′j′m′j
(τ)
〈
ljmj

∣∣σr∣∣l′j′m′j〉 = 0.

(2.47)
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A more detailed calculation about how to solve the differential equation can
be found in [6]. We writeR±(τ) instead ofRj=l± 1

2 (τ). As τ is the time in the radial quantization
the energy of the state can be read by the factor e−Eτ in the radial part.

For q = 0, we find

R±(τ) = C±e±(j+ 1
2

)τ (2.48)

and the energy is E = ±(j + 1
2
), thus there are no zero energy solutions.

For q 6= 0 and j = |q| − 1
2
, we have no solution for l = j − 1

2
, thus we find

R− = C, (2.49)

thus the energy is zero.
For q 6= 0 and j = |q| − 1

2
+ p, with p = 1, 2, 3, · · · , we find

R+(τ) = qC+
1 e

τ
√

(j+ 1
2)

2
−q2 + qC+

2 e
−τ

√
(j+ 1

2)
2
−q2 (2.50)

and

R−(τ) =C−1

√(j +
1

2

)2

− q2 −
(
j +

1

2

) eτ√(j+ 1
2)

2
−q2

+ C+
2

√(j +
1

2

)2

− q2 +

(
j +

1

2

) e−τ√(j+ 1
2)

2
−q2 . (2.51)

These solutions have energy E = ±
√(

j + 1
2

)2 − q2 = ±
√

2|q|p+ p2. Since the second
equality the energy does not depend on j, we find that the degeneracy of the p-th state is j =

|q| − 1
2

+ p.
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3 (2+1) DIMENSIONAL THIRRING MODEL

We already know that in (2 + 1) dimensions the line that separates fermions
and bosons is tenuous, but before we start with our main objective, we can demonstrate an
explicit duality between bosons and fermions. This is the case of the Thirring model in the
large mass limit and the Maxwell-Chern-Simons theory. This chapter is based on the studies of
Frandkin and Schaposnik [21].

3.1 THE FREE FERMION

Before we start with the Thirring model we will give some general properties
of fermions in (2 + 1) dimensions. We start with the Lagrangian

L0 = ψ̄
(
i/∂ +m

)
ψ (3.1)

where /∂ = γµ∂µ, ψ̄ = ψ†γ0. The Dirac matrices obey {γµ, γν} = 2ηµνI2×2, where the metric
tensor has the signature ηµν = diag(+,−,−). We choose the following representation for the
Dirac matrices

γ0 = σ3, γ1 = iσ1 and γ2 = iσ2, (3.2)

where σi are the Pauli matrices. With this representation it is easy to show that (γ0)2 = I and
(γi)2 = −I.

Now we want to analyze the discreet symmetries of parity and time-reversal.
In (2 + 1) dimensions the parity transformation inverts only one axis, because if we inverted
both axis it would be equivalent to a rotation. If we choose to invert x1, the coordinates and the
vector potential transforms as x1 → −x1, A1 → −A1, x2 → x2 and A2 → A2. To find how this
transformation acts on the spinors we consider the massless case and assume that the kinetic
term is invariant

iψ†P†γ0
(
γ0∂0 − γ1∂1 + γ2∂2

)
Pψ = iψ†γ0

(
γ0∂0 + γ1∂1 + γ2∂2

)
ψ. (3.3)

Comparing each term and using that γµγν ∝ εµνσγσ for µ 6= ν, we find that

P†P = I,
{
P , γ2

}
= 0 and

[
P , γ1

]
= 0. (3.4)

The second relation is only satisfied if P is proportional to γ0 or γ1. The third relation allows
γ1 and the identity, thus the only possibility is P ∼ γ1. We also know that P2 = I, thus we find
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P = −iγ1 = σ1. It is easy to check that the mass term breaks parity invariance

ψ̄′ψ′ = −ψ†γ1γ0γ1ψ = ψ†γ0(γ1)2ψ = −ψ̄ψ. (3.5)

Now we want to repeat the process for time reversal, T . We know that T is
anti-unitary, so we write T = KT̃ , where K performs the complex conjugation. As we did
before we impose that the kinetic term is invariant under time reversal and we will find the form
of T̃

−iψ†T̃ †γ0
(
−γ0∂0 − γ1∂1 + γ2∂

2
)
T̃ ψ = iψ†γ0

(
γ0∂0 + γ1∂

1 + γ2∂2
)
ψ. (3.6)

Comparing the terms we find

T̃ †T̃ = I, T̃ †γ0γ1T̃ = γ0γ1 and T̃ †γ0γ2T̃ = −γ0γ2. (3.7)

From the second equation we find that
[
T̃ , γ2

]
= 0, this leaves us with γ2 and the identity.

From the third we find
{
T̃ , γ1

}
= 0. This leaves us with T = Kγ2. The mass term also breaks

time reversal

ψ̄′ψ′ = ψ†(γ2)†γ0γ2ψ = −ψ†γ2γ0γ2ψ = ψ†γ0(γ2)2ψ = −ψ̄ψ. (3.8)

Thus the mass term breaks both parity and time reversal in (2 + 1) dimensions.
One could also check whether the fermion Lagrangian is invariant under chi-

ral transformations, defined as ψ′ = eiθγ
5
ψ, where the γ5 matrix is usually defined as being

proportional to the product of all the other γµ. It has the property to anticommute with all the
other γµ, and we adjust the constant of proportionality such that γ5 is hermitian and (γ5)2 = I.
The problem is that in the minimal representation of fermions in (2 + 1) space-time dimensions
there is no γ5 matrix because iγ0γ1γ2 = I, thus there is no way to define a chiral transforma-
tion. This fact is not exclusive to (2 + 1) dimensions, it happens to all fermionic theories in odd
space-time dimensions. If we were to work in a non-minimal representation to the spinors, for
example we could work with four component instead of two component spinors, we would be
able to build a chiral transformations as we would have the four dimensional Dirac matrices.

3.2 THE THIRRING MODEL

Now we can start to work with the Thirring model by defining its partition
function

ZTh =

∫
DψDψ̄ exp i

∫
d3x

[
ψ̄(i/∂ +m)ψ − g2

2
jµj

µ

]
, (3.9)
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where g is the coupling constant and jµ is the U(1) Noether current

jµ = ψ̄γµψ. (3.10)

Let us perform a dimensional analysis of the Thirring partition function in
units of mass, [xµ] = −1. We find [ψ] = 1, [jµjµ] = 4 and [ψ̄ψ] = 2, making the Thirring
interaction perturbatively irrelevant and the mass term relevant in the low-energy limit. Thus
we expect that in low enough energies the Thirring interaction will not give any meaningful
contribution to the effective action.

We wish to investigate the low-energy effective action of the Thirring model.
As we shall discuss, this will provide us with a bosonic theory. To do this we integrate out the
fermionic fields from the partition function (3.9). To do so, it is convenient to we introduce a
new auxiliary vector field aµ in a way that when we eliminate the quartic Thirring interaction

exp

[
−ig

2

2

∫
d3x jµj

µ

]
=

∫
Da exp i

∫
d3x

[
1

2
aµa

µ + gaµj
µ

]
. (3.11)

After this we integrate out the fermionic fields and obtain an effective action for the vector field

ZTh =

∫
Dψ̄DψDa exp

[
i

∫
d3x ψ̄

(
i/∂ +m+ g/a

)
ψ +

1

2
aµa

µ

]
=

∫
Da exp

[
tr ln

(
i/∂ +m+ g/a

)
+ i

∫
d3x

1

2
aµa

µ

]
≡
∫
Da eSeff [a]. (3.12)

The calculation of this effective action can be represented by the following Feynman diagrams.

Figura 3.1: Diagramatic expansion for fermionic determinant

The relevant terms in the IR limit are the quadratic ones, coming from the
second diagram

Seff =

∫
d3x

[
1

2
aµa

µ ∓ g2

8π
εµνρaµ∂νaρ +

g2

24mπ
fµνf

µν

]
+ · · · , (3.13)

where fµν = ∂µaν − ∂νaµ, εµνρ is the Levi-Civita symbol and ∓ = −sign(m). A detailed
calculation of this effective action and its propagator can be found in Appendix A. In the large
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mass limit, m → ∞, we recognize the first two terms of the effective action, equation (3.13),
as the Self-Dual action [22]. Thus, up to the order 1/m, we have demonstrated the equivalence
between the Thirring partition function and the Self-Dual partition function

ZTh ≈ ZSD. (3.14)

Here ≈ means that the duality is valid up to the order of 1/m.
With the propagator corresponding to the equation (3.13)

Gµν(k) = − 1

9g4k2m2 − 4 (g2k2 − 6πm)2

[
24πm

(
6πm− g2k2

)
ηµν + 36iπg2m |m| εµνσkσ

+
(
g4
(
4k2 − 9m2

)
− 24πg2m

)
kµkν

]
, (3.15)

we can extract some information on the physical content of the model. There will be only bound
states excitations if we find real poles with k2

± < 4m2. Considering m > 0 and the poles of the
propagator,

k2
± =

9g4m2 + 48πg2m± 3m
√

9g8m2 + 96πg6m

8g4
, (3.16)

we find that the bound state condition is satisfied when g2 > 6π
m

for k2
+ and g2 > 6π

7m
for k2

−.
This means that for any given mass, there is a strong enough coupling g2 that, up to order 1/m2,
the Thirring action describes only bound states. This can be easily seen from the graph bellow.

Figura 3.2: Plot for k2
± versus g2 for m = 1

Now, by considering the low-energy limit, m→∞, we see that the Self-Dual
action only describes bound states with mass 4π

g2
. In the low-energy limit, or g2 large enough,

any remaining dynamics is due to bound states. This is the same result we get in the large-N
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limit [23].
It is interesting to note what happens when we consider the partition function

(3.9) for a set of fermions, which is renormalizable in the 1/N expansion [23]. In this case
the action arising from this theory is also the equation (3.13), thus in the low-energy it limit
continues to be consisted by bound states. This happens because in the low-energy limit of the
N fermions Thirring theory there will also be no free particles, even if there are multiple flavors,
thus there should be no free particles in its effective action, the Self-Dual theory.

There also seems to be an inconsistency in the duality (3.14), if we take the
limitm→ 0 in the Thirring action, equation (3.9). In this case we eliminate the term that breaks
parity and time reversal, but this does not eliminate the Chern-Simons term in the Thirring
effective action, which breaks both parity and time reversal, this is an anomaly. To further
support the claim of the Chern-Simons term we note that the mass term acts as a Pauli-Villars
regulator in the partition function (3.9), a detailed calculation of how this happens can be found
in [24]. Even with a different regulator, like a ζ function regulator, we will find the same
anomalous Chern-Simons term [25].

Now we prove the equivalence between the Self-Dual theory and the Maxwell-
Chern-Simons theory. This equivalence was first studied by Deser and Jackiw [22], but we fol-
low the reference [21] that uses the path integral approach. This duality will allow us to prove
the equivalence between the Thirring and the Maxwell-Chern-Simons theories. To this end we
introduce an interpolating partition function

ZI =

∫
DãDa exp i

∫
d3x

[
1

2
aµa

µ − εµνρaµ∂ν ãρ ∓
2π

g2
εµνρãµ∂ν ãρ

]
. (3.17)

This partition function received this name because integrating out different vector fields yields
two different theories. It is also important to note that this partition function is gauge invariant
under transformations of ã but not of a.

We begin integrating over ã,

ZI =

∫
Da Z̄I [a] exp

(
i

2

∫
d3x aµa

µ

)
=

∫
Da exp i

∫
d3x

[
1

2
aµa

µ ∓ g2

8π
εµνρaµ∂νaρ

]
= ZSD. (3.18)

The detailed calculation of Z̄I [a] can be found in Appendix B. We recognize this as the Self-
Dual partition function, thus we have proved the equivalence

ZSD = ZI . (3.19)
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Integrating the interpolating partition function over a instead of ã, we get

ZI =

∫
Dã exp i

∫
d3x

[
−1

4
f̃µν f̃

µν ∓ 2π

g2
εµνρãµ∂ν ãρ

]
= ZMCS, (3.20)

which is the Maxwell-Chern-Simons theory. Thus, using the duality (3.19) we have established
that

ZSD = ZMCS, (3.21)

and using the duality (3.14), we get a new duality

ZTh ≈ ZMCS. (3.22)

As before, ≈ means that the duality is valid up to the order 1/m.
Something quite interesting happened here. The left hand side is not exactly

solvable, but the right hand side is quadratic in the field ã. Thus this duality should be suitable
to exactly solve the Thirring model up to the order 1/m. Another noteworthy property is that
the coupling appears as g2 in the Thirring action and as 1

g2
in the MCS theory.

The duality between the Self-Dual theory and the Maxwell-Chern-Simons
theory is exact. Thus we would expect the propagator to have the same pole structure. The
propagator of both theories can be calculated the same way we calculated the propagator of
the Thirring effective action in Appendix B. It is important to remember to add a gauge fixing
term in the MCS theory. This can be done with the term λ

2
(∂µaµ)2, but it is not needed in the

Self-Dual theory because the term aµa
µ breaks gauge invariance. We find that the Self-Dual

theory propagator is

SSDµν (k) = − 1

g4k2 − 16π2

[
16π2ηµν − g4kµkν ± 4iπg2εµσνk

σ
]

(3.23)

and the MCS theory propagator is given by

SMCS
µν (k) =

1

g4k2 − 16π2

[
g4ηµν +

16π2 − g4k2(λ+ 1)

k4λ
kµkν ±

4iπg2

k2
εµσνk

σ

]
. (3.24)

In the MCS propagator we must disregard poles involving the gauge fixing
parameter λ, as it is not a physical constant. This makes the second term become −g4kµkν/k

2.
In addition, what carries physical meaning is the S matrix. To calculate it we would need to take
the product kµSMCS

µν , this is equivalent to selecting ony the transversal part of the propagator.
This would eliminate both the remaining 1/k2 poles in the second and third terms, in such a way
that the only pole is k = 4π/g2. Thus both propagators have the same physical pole structure,
as we expected for an exact duality.

We are also interested in the bosonization rule for this duality. This rule gives
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us a direct mapping between one object from the bosonic theory and one from the fermionic
theory. To this end we introduce a coupling between the U(1) current and a new external gauge
field bµ in the Thirring action. This can be achieved by making the shift aµ → aµ − 1

g
bµ, and

then we perform the path integral the same way in did in the Appendix A to obtain the duality
between the Thirring and the Self-Dual theories. The Thirring partition function coupled to the
new field bµ reads

ZTh[b] =

∫
DψDψ̄Da exp i

∫
d3x

[
ψ̄
(
i/∂ +m+ g/a

)
+

1

2
aµa

µ + bµj
µ

]
(3.25)

To connect the Thirring theory to the Maxwell-Chern-Simons theory we in-
troduce a coupling in the interpolating partition function, equation (3.17) and repeat the calcu-
lations we did to prove duality between the Self-Dual and the Maxwell-Chern-Simons theory.
We obtain that the Maxwell-Chern-Simons action coupled to bµ is

SMCS =

∫
d3x

(
−1

4
f̃µν f̃

µν +
1

g
εµνσbµ∂ν ãσ ∓

1

g2
εµνσãµ∂ν ãσ

)
. (3.26)

We observe that bµ is coupled to jµ in the Thirring action and to 1
g
εµνσ∂ν ãσ.

As we already know the duality between these two theories we conclude that the bosonization
rule is

ψ̄γµψ ≈ 1

g
εµνσ∂νaσ. (3.27)

As the duality is valid up to orders of 1/m so is this bosonization rule. A detailed calculation
of how the bosonization rule is be derived can be found in [21].
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4 A WEB OF DUALITIES

In the previous chapter we have seen the equivalence between the Thirring
model and the Maxwell-Chern-Simons theory in the low-energy limit, which can be thought
as a bosonization duality. However, it is not a true bosonization, as it relates only the bound
state sector of the Thirring to the Maxwell-Chern-Simons. Nevertheless, it states that there is an
equivalence between two theories of different characters. An important lesson from the previous
chapters is that the Chern-Simons term was present in all the discussion relating bosonic and
fermionic theories. Therefore, it is expected that it will play a central role in the bosonization
relation examined in this chapter. Our discussion is based on [8, 9].

4.1 BOSONIZATION DUALITIES

Now we want to discuss two more bosonization dualities that arise when we
attach flux to a theory. To proceed we first define

Zscalar+flux[A] =

∫
DφDφ∗Da exp i (Sscalar[φ, a] + SCS[a] + SBF [a;A]) , (4.1)

where

SBF [a,A] =
1

2π

∫
d3x εµνσaµ∂νAρ, (4.2)

SCS[a] =
1

4π

∫
d3x εµνσaµ∂νaσ, (4.3)

Sscalar[φ, a] =

∫
d3x |(∂µ − ieaµ)φ|2 + V (φ). (4.4)

These actions are gauge invariant, but only the scalar action is invariant under parity and time
reversal. The potential must be of kind |φ|4 for the dualities to work, as it allows us to define the
theory in a Wilson-Fischer fixed point, where the theory is scale invariant [7]. For convenience
we will often omit this term from the action. We also define

Zfermion[A] =

∫
DψDψ̄eiSfermion[ψ,A], (4.5)

where the fermion action is the Dirac massless action

Sfermion[A] =

∫
d3x iψ̄(/∂ − ie /A)ψ. (4.6)

This action is invariant under gauge transformations. Parity and time reversal invariance can
also be immediately inferred due to the absence of a mass term. As we discussed before, it is
the mass term that breaks both P and T .
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As we learned in the previous chapter the result of attachment of a magnetic
flux to a particle is the transmutation between bosons and fermions. Following [9], we will
assume the duality

Zfermion[A]e−
i
2
SCS [A] = Zscalar+flux[A] (4.7)

to be true and prove a series of other dualities. Because of this we call it the master duality.
For the duality to be true we consider the scalar side to be in the Wilson-Fischer fixed point.
To do this, we must consider that the potential has a |φ|4 form, as we will discuss shortly. We
also consider that both gauge fields that appear in the duality (4.7) obey the Dirac quantization
condition

1

2π

∫
S2

d2xF12 = Z. (4.8)

Upon a first look there might seem to be a problem with the duality (4.7)
since only the right hand side appears to be gauge invariant. We already encountered this kind
of inconsistency before when we calculated the Thirring effective action. What is happening
is that the fermion partition function is also anomalous, and the Chern-Simons term in the left
hand side is what cancels this anomaly. The same thing happens with both parity and time
reversal.

An argument to support this duality can be found if we take the equation of
motion for a0 from the partition function (4.1) in the absence of a background source A = 0,

ρscalar = −da
2π
, (4.9)

where ρscalar = 2a0φφ∗+i (φ∂0φ∗ − φ∗∂0φ). Integrating both sides, and using the quantization
condition we see that the presence of the Chern-Simons term attaches flux to the scalar particles.
From our previous discussion we expect a scalar attached to flux to behave like a fermion, thus
the right hand side of the duality (4.7) behaves like a fermion.

We can also check that the Hall conductivity, σxy = k
2π

, is matched by both
sides of the duality [9, 8]. The Chern-Simons level k is the constant of the background field
A in the partition function. To do this we must gap the theory by adding a mass term to the
duality. In the fermion side we must integrate out the fermion fields. We already performed
this calculation in the last chapter and obtained ∓ i

2
SCS[A]. With the term that we already have

in the duality (4.7), this will produce a Chern-Simons with level k = 0 for the plus sign and
k = −1 for the minus sign. To find the Hall conductivity we take the functional derivative in
respect to A0. We obtain σxy = 0 for the plus sign and σxy = 1

2π
for the minus sign.

In the bosonic side we gap the theory by modifying the potential with V (φ) =

λ(|φ|2 ± m2)2. A precise way to add the mass term will be discussed in the Chapter 5. This
potential in known as the Mexican Hat potential because of the form of its graph. For the
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minus sign the field acquires an expected value |φ| = m. This motivates us to write the field as
φ(x) = ρ(x)eiθ(x) with ρ(x) = m + χ(x). We work only with the terms that are important to
our calculation

L = LCS[a] + LBF [a,A] + ρ2 (∂µθ − eaµ)2 + ∂µρ∂
µρ− λ

(
ρ2 −m2

)2

L = LCS[a] + LBF [a,A] + ρ2∂µθ∂
µθ + 2ρ2θaµ∂

µθ + e2χ2aµa
µ + 2e2mχaµa

µ + e2m2aµa
µ

− λ
(
ρ2 −m2

)2
. (4.10)

Now the dominant term is the mass term, thus the Hall conductivity is zero, matching one of
the results of the fermion. For the plus sign in the potential the field do not acquire an expected
value. Thus the Hall conductivity is given by the Chern-Simons term, we obtain σxy = 1

2π
.

From the duality (4.7) we can derive another bosonization. To do this, we
promote the background gauge field to a dynamical one (every time we do this we will change
the field from upper-case letters to lower-case letter A→ a) and couple it to a new background
gauge field through BF coupling. The duality becomes∫

DψDψ̄Da exp i

(
Sfermion[ψ, a]− 1

2
SCS[a]− SBF [a;A]

)
=

∫
DφDφ∗DaDã exp i (Sscalar[φ, a] + SCS[a] + SBF [a; ã]− SBF [ã;A])

=

∫
DφDφ∗ exp i (Sscalar[φ,A] + SCS[A]) . (4.11)

In the last step we used the equation of motion for ã, dA = da, and integrated out ã. We
recognize the left hand side as the fermion attached to flux partition function. Doing this process
we obtained a new duality between a fermionic theory and a bosonic theory

Zfermion+flux[A]e−iSCS [A] = Zscalar[A]. (4.12)

Throughout this work we will assume that the process of promoting the back-
ground gauge field to a dynamical one and adding a BF coupling or a Chern-Simons term will
not change the validity of the master duality, equation (4.7).

As a last discussion in this section we would like to talk about the time rever-
sed version of these dualities because we will use them to derive the particle-vortex dualities.
We know that the free theories are invariant. Under time reversal x0 and Ai are odd, xi and A0

are even. With this in mind, it is easy to show that the Chern-Simons and the BF action are both
odd under time reversal. With this we can find the time reversed version of the dualities. The
duality (4.12) becomes

Zscalar[A] = Z̄fermion+flux[A]eiSCS [A], (4.13)
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where

Z̄fermion+flux[A] =

∫
DψDψ̄Da exp i

(
Sfermion[ψ, a] +

1

2
SCS[a] + SBF [a,A]

)
. (4.14)

And the duality (4.7) becomes

Zfermion[A] = Z̄scalar+flux[A]e−
i
2
SCS [A], (4.15)

where

Z̄scalar+flux[A] =

∫
DφDφ∗Da exp i (Sscalar[φ, a]− SCS[a]− SBF [a,A]) . (4.16)

4.2 BOSONIC PARTICLE-VORTEX DUALITY

Now we obtain two particle-vortex dualities, one for bosons and one for fer-
mions. The results will also serve as consistency check for our master duality, equation (4.7),
as both particle-vortex dualities are present in the literature and the bosonic one is quite well
known [26, 27].

We start with the duality (4.12). We promote the background gauge field A to
a dynamical gauge field a, and introduce a new background gauge field A through BF coupling.
The right hand side becomes the scalar QED partition function

Zscalar QED[A] =

∫
DφDφ∗Da exp i (Sscalar[φ, a] + SBF [a,A]) . (4.17)

The left hand side reads∫
DψDψ̄DaDã exp i

(
Sfermion[ψ, ã]− 1

2
SCS[ã]− SBF [a; ã]− SCS[a] + SBF [a,A]

)
=

∫
DψDψ̄Dã exp i

(
Sfermion[ψ, ã] +

1

2
SCS[ã]− SBF [ã, A] + SCS[A]

)
.

(4.18)

In the last step we have used the equation of motion for a, aµ = Aµ − ãµ , and integrated it out.
We recognize the first thee terms as the time reversed partition function

Z̄fermion+flux[−A], defined by the equation (4.14), thus we can replace the left hand side using
the duality (4.13). The Chern-Simons actions cancel each other and we are left with

Zscalar[−A] = Zscalar QED[A]. (4.19)

This is the original particle-vortex duality between the XY model and the Abelian Higgs model
[26].
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To see how the particle-vortex duality is manifested in the equation (4.19) we
must understand what is a vortex state. Following [28, 29] we introduce the potential V =

λ(|φ|2−φ2
0)2 we used in the last section. This induces a finite energy solution with a non-trivial

boundary condition at spatial infinity, namely φ → φ0e
inθ as r → ∞, with φ0 constant. To

make φ(θ = 0) = φ(θ = 2π) we must restrict n to integers.
Now we look at the energy for the scalar field

H =

∫
d2x

(
ππ∗ + (~∇− i~a)φ · (~∇+ i~a)φ∗ + V (φ)

)
, (4.20)

where π = ∂L
∂φ̇

= φ̇∗ + ia0φ
∗ and π∗ = ∂L

∂φ̇∗
= φ̇ − ia0φ. If we consider the static case and the

absence of the gauge field, the spacial part becomes

∣∣∣~∇φ∣∣∣2 =

∣∣∣∣inr φ θ̂
∣∣∣∣2 (4.21)

and the energy is logarithmically divergent

H = n2φ2
0

∫
1

r2
r dr dθ . (4.22)

Thus we must choose a gauge field that eliminates this divergence. The simplest choice is

~a =
n

r
θ̂ = ~∇(nθ), for r →∞. (4.23)

With this (~∇− i~a)φ = 0 in the limit r →∞ and the energy of the vortex state is finite.
So what we learned is that the vortex configuration is not only composed by

the scalar field, but also by a matching of the gauge field. Now we take the functional derivative
on both sides of the duality (4.19) with respect to A0. From the left hand side we obtain the
current for U(1) transformations. This is the current corresponding to charge conservation

j0 = i
(
φ∗φ̇− φφ̇∗

)
+ 2A0|φ|2. (4.24)

On the right hand side we obtain the field strength for the monopole state

1

2π
f12 =

1

2π
B. (4.25)

In the end this duality can be viewed between the expected value of two objects of the theories,
that is, between j0 from the free theory and the magnetic field from the scalar QED.

We can also explicitly check the Dirac quantization condition for the gauge
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field that we choose, equation (4.23)

1

2π

∫
d2xB =

1

2π

∫
d~r · A =

n

2π

∫
1

r
r dθ = n. (4.26)

4.3 FERMIONIC PARTICLE-VORTEX DUALITY

The fermionic particle-vortex duality can be obtained through a similar pro-
cess. We start rewriting the duality (4.7) as

Zfermion[A] = Zscalar+flux[A]e
i
2
SCS [A]. (4.27)

Again we promote the background gaugeA to a dynamical gauge field a and couple the partition
functions to a new background gauge field A. The left hand side becomes the three dimensional
QED partition function

ZQED[A] =

∫
DψDψ̄Da exp i (Sfermion[ψ, a] + SBF [a,A]) . (4.28)

The right hand side reads∫
DφDφ∗DaDã exp i

(
Sscalar[φ, a] + SCS[a] + SBF [ã, a] +

1

2
SBF [ã, A] +

1

2
SCS[a]

)
=

∫
DφDφ∗Da exp i

(
Sscalar[φ, a]− SCS[a]− SBF [a,A]− 1

2
SCS[A]

)
.

(4.29)

On the last line we took the equation of motion for ã, ãµ = −Aµ − 2aµ, and integrated out ã.
We recognize the first three terms as the time reversed scalar attached to flux

partition function, given by the equation (4.16). Now we use the duality (4.15) and obtain the
new duality

Zfermion[A] = ZQED[A]. (4.30)

Here the particle-vortex duality is manifested the same way as in the scalar case, that is between
the gauge fields of the QED theory and the fermion field of the free theory. This duality was
firstly proposed by Son in the study of the Quantum Hall Effect at filling fraction ν = 1

2
[10].

When we rewrote the duality (4.7) as the equation (4.27), we introduced the
problem that both sides of the duality are not gauge invariant. The left hand side because we
can perform the fermion path integral and obtain i

2
SCS[A]. The right hand side is not gauge

invariant because of the same type of term. We can fix this if we choose the fields not to obey
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the standard Dirac quantization condition (4.8), but instead

1

2π

∫
S2

dA = 2Z. (4.31)

This makes sense for a background field, but we promoted A to a dynamical
field. The way to fix this is to imagine that the Chern-Simons term with a fractional level is
coming from

e
i
2
SCS [a] →

∫
Db exp i (γSCS[b] + αSBF [b, a]) = e−i

α2

γ
SCS [a]. (4.32)

Thus choosing α and γ suitably, γ = −2α2 in our case, we can produce a a term that is not
gauge invariant from a gauge invariant partition function.

But even with this trick we are still left with another problem. To see what it
is, let us take the equation of motion from the action (4.32)

db = −α
γ

da . (4.33)

If we take the integral over both sides in the equation above it is easy to see that the Dirac
quantization condition cannot be simultaneously satisfied on both sides of the equation. This is
not a problem for us as we work with local physical quantities, like the Hall conductivity, thus
we will not need to take a integral over the space.
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5 MASSIVE DUALITIES

We already have some evidences on the importance of a mass term in the
dualities from our discussion on the Hall conductivity, where we had to insert a mass term to
check that the Hall conductivity is consistent between both sides of the duality. In this chapter
we show precisely how to introduce a mass term in the dualities from the previous chapter and
obtain a new method to derive the duality between the Thirring model and the Maxwell-Chern-
Simons theory . We follow the method presented in [8].

5.1 MASSIVE BOSONIZATION DUALITIES

We start with the duality (4.7) with a symmetry breaking potential in the scalar
partition function. The starting duality reads

Zfermion[A]e−
i
2
SCS [A] =

∫
Da eiSscalar[a]+iSCS [a]+iSBF [a,A], (5.1)

where

eiSscalar[a] = exp i

∫
d3x

[
|(∂µ − iaµ)φ|2 − λ

4
|φ|4
]

=

∫
Dσ exp i

∫
d3x

[
|(∂µ − iaµ)φ|2 − σ|φ|2 +

1

λ
σ2

]
(5.2)

Using dimensional analysis we find that [λ] = 1. In the low-energy limit we must take λ→∞,
whith this we loose the term σ2 and this field can be seen as a Lagrange multiplier. If we think
of σ a dynamical field we can integrate it out and return to the Wilson-Fischer, equation (5.2).
On the other hand, if we think of σ a background field it then becomes a source for |φ|2.

By following [8] we will assume the following map between operators to be
true

ψ̄ψ ⇐⇒ −σ. (5.3)

A similar version of this map is known to be true in the large-N limit [30, 31]. Following [8]
we will assume this to be true outside the large-N limit. Naively, a real scalar field is considered
to be even under both parity and time reversal. On the other hand, the map ψ̄ψ ⇐⇒ −σ
implies that σ is odd, since ψ̄ψ. However, as the boson theory is an interacting one, involving
Chern-Simons, it is not easy to attribute quantum numbers to σ.
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This motivates us to write the massive version of the duality (5.1) as

Zfermion[A,m]e−
i
2
SCS[A] =

∫
Da Zscalar[a,m]eiSCS [a]+iSBF [a,A]

Zfermion[A,m]e−
i
2
SCS[A] = Zscalar+flux[A,m], (5.4)

where

Zfermion[A,m] =

∫
Dψ̄Dψ exp i

∫
d3x

[
ψ̄(i/∂ + /A)ψ −mψ̄ψ

]
(5.5)

and

Zscalar[a,m] =

∫
DφDφ∗Dσ exp i

∫
d3x

[
|(∂µ − iaµ)φ|2 − σ(|φ|2 −m) +

1

λ
σ2

]
=

∫
DφDφ∗ exp i

∫
d3x

[
|(∂µ − iaµ)φ|2 − λ

4

(
|φ|2 −m

)2
]

=

∫
DφDφ∗ exp i

∫
d3x

[
|(∂µ − iaµ)φ|2 − λ

4
|φ|4 +

mλ

2
|φ|2
]
. (5.6)

Note that the sign of the mass term is inverted in the two dualities. This may
seem odd, but it is this difference of sign that ensures the matching Hall conductivity between
both sides of the duality. The way to calculate σxy here is quite similar to what we did in
Chapter 4. In the fermion side σxy is zero or 1

2π
for positive and negative mass respectively. In

the bosonic side the Higgs mechanism happens for positive m leaving us with σxy = 0 and for
negative mass we obtain the Hall conductivity as usual σxy = 1

2π
.

Now it is easy to see that the partition function (5.6) describes a massive scalar
with mass mλ

2
. The duality (5.4), that we just obtained, is the massive version of the duality

(4.7). We want to use this duality to obtain the massive version of (4.12). As we did before, we
promote the background field A to a dynamical field ã and couple it to a new background field.
After this operation the duality reads∫
Da Zfermion[a,m]e−

i
2
SCS [a]−iSBF [a,A] =

∫
DãDa Zscalar[ã,m]eiSCS [ã]+iSBF [ã,a]−iSBF [a,A]

Zfermion+flux[A,m] = Zscalar[A,m]eiSCS [A], (5.7)

where the fermion attached to flux partition function is the left hand side of the equation above.
As a comment we promote m to a dynamical field µ in the equation (5.4) and

couple it to a new background field m. We obtain∫
Dµ Zfermion[A, µ]e−

i
2
SCS [A]−iµm =

∫
DaDσ DµZ scalar [a, σ]ei(SCS [a]+SBF [a;A]+µ(σ−m))

=

∫
Da Z scalar [a,m]ei(SCS [a]+SBF [a;A]). (5.8)
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The left hand side can be viewed as the infrared limit of a Yukawa-type theory. For a large
number of flavors it is known to describe a Gross-Neveu fixed-point [23]. However for a small
number of flavors it is unknown if there is a fixed point. This hints that the map (5.3) may imply
a second bosonization duality, in which the Gross-Neveu fermion is related to the free scalar
with flux.

We see that both massive dualities, equation (5.7) and equation (5.4), are very
similar to their non-massive versions, equations (4.7) and (4.12). As we did before we would
like to obtain the time reversed versions of the massive dualities. This will allow us to obtain
the massive particle-vortex dualities. We follow our previous discussion on time reversal, and
remember that the massive fermionic term acquires a sign under time reversal.

Under time reversal, the duality (5.7) becomes

Z̄fermion+flux[A,m] = Zscalar[A,m]e−iSCS [A], (5.9)

where

Z̄fermion+flux[A,m] =

∫
Dψ̄DψDa Zfermion[a,−m] exp i

[
1

2
SCS[a] + SBF [a,A]

]
. (5.10)

Under time reversal, the duality (5.4) becomes

Zfermion[A,−m]e
i
2
SCS [A] = Z̄scalar+flux[A,m], (5.11)

such that

Z̄scalar+flux[A,m] =

∫
Da Zscalar[a,m]e−iSCS [a]−iSBF [a,A]. (5.12)

5.2 MASSIVE PARTICLE-VORTEX DUALITIES

Here we wish to examine the calculations from Chapter 4 in the massive case
to obtain a massive version for the particle-vortex dualities. As we did before, we will mani-
pulate one of the massive bosonization dualities and use a time reversed duality. We start by
rewriting the equation (5.4) as

Zfermion[A,m] = Zscalar+flux[A,m]e
i
2
SCS [A]. (5.13)

We promote the background gauge field A to a dynamical gauge field and couple it to a new
background gauge field. The left hand side reads

ZQED[A,m] ≡
∫
Da Zfermion[a,m]e

i
2
SBF [a,A]. (5.14)



38

The right hand side reads∫
DãDa Zscalar[a,m] exp i

[
1

2
SCS[ã] + SCS[a] + SBF [a, ã] +

1

2
SBF [ã, A]

]
=

∫
Da Zscalar[a,m] exp i

[
−1

2
SCS[A]− SCS[a]− SBF [a,A]

]
= Zfermion[A,−m]. (5.15)

Here we integrated out the field ã using its equation of motion ãµ = −Aµ − 2aµ. In the last
step we have used the time reversed duality (5.11). With this we have the massive fermion
particle-vortex duality

ZQED[A,m] = Zfermion[A,−m]. (5.16)

Now we proceed similarly, but starting with the duality (5.7). As we did
before we promote the background gauge field to a dynamical one and couple it to a new back-
ground field, the right hand side reads

Zscalar QED[A,m] ≡
∫
Da Zscalar[a,m]eiSBF [a,A]. (5.17)

And the right hand side reads∫
DãDa Zfermion[a,m] exp i

[
−1

2
SCS[a]− SBF [a, ã]− SCS[ã] + SBF [ã, A]

]
=

∫
DaZfermion[a,m] exp i

[
1

2
SCS[a]− SBF [a,A] + SCS[A]

]
= Zscalar[−A,−m]. (5.18)

In the second line we used the equation of motion ãµ = Aµ − aµ and integrated out the field ã.
And in the last line we used the duality (5.11). Finally we write the massive fermion particle-
vortex duality as

Zscalar[−A,−m] = Zscalar QED[A,m]. (5.19)

5.3 THIRRING DUALITY FROM PARTICLE-VORTEX DUALITY

One could ask if it is possible to derive the duality between the Thirring model
and the Maxwell-Chern-Simons theory through the same method we used to derive the other
dualities. To do this we start with the duality (5.16) with the sign of the mass changed in both
sides. We choose this one because we can easily make one side become the Thirring partition
function and integrate the fermions to generate a Chern-Simons term in the other side. To
generate the Thirring partition function we add a term 1

2g2
AµA

µ and integrate over A. Now the
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right hand side reads

ZTh =

∫
Dψ̄DψDa exp i

∫
d3x

[
ψ̄(i/∂ +m+ /a)ψ +

1

2g2
aµa

µ

]
. (5.20)

The left hand side reads∫
DaDãDψ̄Dψ exp i

∫
d3x

[
ψ̄
(
i/∂ + /a−m

)
ψ +

1

4π
εµνρaµ∂ν ãρ +

1

2g2
ãµa

µ

]
. (5.21)

Integrating out the fermionic fields we obtain the same results we found in the Appendix A∫
DaDã exp i

∫
d3x

[
± 1

8π
εµνρaµ∂νaρ +

1

4π
εµνρaµ∂ν ãρ +

1

2g2
ãµã

µ

]
. (5.22)

We make the field rescaling a → −4π
g
a and ã → gã and are left with a partition function very

similar to the interpolating partition function (3.17)∫
DaDã exp i

∫
d3x

[
±2π

g2
εµνσaµ∂νaσ − εµνσaµ∂ν ãσ +

1

2
ãµã

µ

]
. (5.23)

Integrating over ãµ, we get

ZTh =

∫
Da exp i

∫
d3x

[
±2π

g2
εµνσaµ∂νaσ −

1

4
fµνf

µν

]
= ZMCS. (5.24)

This is the same duality found in the equation (3.20), except that here we have sign(m) with the
Chern-Simons term and in the previous chapter we obtained −sign(m). This result is of great
importance as it gives further support to the master duality, equation (4.7).

It is important to note that when we integrated out the fermion fields we left
out terms of order O( 1

m
). This is compatible with our discussion on the Thirring model effec-

tive action because there also we left out terms of order O( 1
m

) to obtain the Self-Dual action,
equation (3.18). As we expected both methods we used to obtain the Thirring duality are only
valid in the low-energy limit.
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6 FINAL REMARKS

In this work we have studied aspects of dualities in (2 + 1) dimensional quan-
tum field theory. As we saw, this dimensionality is special because the quantum numbers, spin
and statistics, are not so rigid. In fact, there is no limitation to the statistics. The underlying me-
chanism is the conversion of quantum numbers like spin and statistics. This can be incorporated
in a local quantum field theory using a Chern-Simons term, that can be easily incorporated only
in a (2 + 1) dimensional field theory.

After discussing the basic elements on the importance of the Chern-Simons
term to the transmutation of spin-statistics, we analyzed dualities in specific models. We started
with the one between the Thirring model and the Maxwell-Chern-Simons theory. The existence
of this duality and our knowledge on the effects of the Chern-Simons term on the transmutation
of spin-statistics motivated us to study a master bosonization duality, which passes several con-
sistency checks, like the Hall conductivity and the attachment of flux. From this one we were
able to derive another bosonization duality and two more particle-vortex dualities.

To calculate the Hall conductivity as a consistency check to our master duality
we had to insert a mass term in our dualities. This motivates us to study the massive versions the
two bosonization and particle-vortex dualities. Using these results we extended our discussion
to show another way to obtain the duality between the Thirring model and the Maxwell-Chern-
Simons theory.

Another method to obtain bosonization dualities, that we did not discuss here,
is to work in a lattice. This method has had great success and some of the dualities we discussed
in this work can also be obtained from this approach [26, 32, 33]. A newer approach to (2 + 1)

bosonization is to define a series of theories in (1+1) dimensions and add an interaction between
the theories. This is called the quantum wires approach [34]. The process we used to derive
the dualities in the Chapter 4 could be extended using more external fields and the addition of
Chern-Simons terms with different levels. This leads to a series of new dualities that we did not
discuss here [9, 8].

Further studies could be focused in finding a way to derive the massive duali-
ties from the non-massive ones and check whether the dynamically generated mass is compati-
ble in the two theories. This kind of effect is known to happen through quantum corrections in
the (3 + 1) dimensional φ4 theory as a consequence of the Coleman-Weinber mechanism [35].
On the fermion side the same is known to happen with the three dimensional Thirring model
[23].
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A APPENDIX A: THIRRING EFFECTIVE ACTION

In this appendix we want to perform the fermionic path integral in the par-
tition function (3.9) and obtain the effective action (3.13). We eliminate the quartic Thirring
interaction using a new auxiliary gauge field. We substitute

exp

[
−ig

2

2
jµj

µ

]
=

∫
Da exp i

∫
d3x

[
1

2
aµa

µ + gaµj
µ

]
, (A.1)

in the partition function (3.9), and obtain

ZTh =

∫
Dψ̄DψDa exp

[
i

∫
d3x ψ̄

(
i/∂ +m+ g/a

)
ψ +

1

2
aµa

µ

]
=

∫
Da exp

[
tr ln

(
i/∂ +m+ g/a

)
+ i

∫
d3x

1

2
aµa

µ

]
. (A.2)

In the last step we performed the fermionic path integral.
Now we focus our attention on the most relevant terms

tr ln
(
i/∂ +m+ g/a

)
= tr log

(
i/∂ +m

)
+ g tr

(
1

i/∂ +m
/a

)
+
g2

2
tr

(
1

i/∂ +m
/a

1

i/∂ +m
/a

)
+ · · · .

(A.3)

The first term is a c-number, thus it will not contribute to the effective action, so we will just
ignore it. The second term is the tadpole diagram on the left hand side of FIG. [3.1], as it has
no dependence on the external momentum, its value is zero. But this result can be explicitly
demonstrated quite easily using that the trace of γµ. The third term will produce the effective
action that we are looking for

MCS =
1

2

g2

(2π)6
tr

∫
d3pd3qd3xd3y aµ(x)aν(y)

[(
/p−m
p2 −m2

)
γµ
(
/q −m
q2 −m2

)
γν
]
eix(p−q)eiy(q−p).

=
1

2

g2

(2π)6

∫
d3xd3y aµ(x)aν(y)

∫
d3keik(x−y)

∫
d3q tr

[(
/k + /q −m

(k + q)2 −m2

)
γµ
(
/q −m
q2 −m2

)
γν
]

=
1

2

g2

(2π)6

∫
d3xd3yaµ(x)aν(y)

∫
d3keik(x−y)

∫
d3q

1

(k + q)2 −m2

1

q2 −m2

×
[
2(kµqν − kσqσηµν + kνqµ + 2qµqν − qσqσηµν) + 2imkσε

σµν + 2m2ηµν
]
. (A.4)

where we defined k ≡ p− q.
In order to obtain the Chern-Simons action we look at the kσεσµν term in the
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low-energy limit, k ≈ 0

CS =
1

2

g2

(2π)6

∫
d3xd3y aµ(x)aν(y)

∫
d3keik(x−y)2imkσε

σµν

∫
d3q

(
1

q2 −m2

)2

=
−g2m

64π4|m|

∫
d3xd3y aµ(x)aν(y)

∫
d3keik(x−y)kσε

σµν

= −isign(m)
g2

8π

∫
d3x εµνσaµ∂νaρ. (A.5)

Now we wish to obtain the Maxwell term from the equation (A.4). As the
Maxwell term has two derivatives we expand the first fraction up to order kαkβ and collect the
appropriate terms.

Maxwell =
1

2

g2

(2π)6

∫
d3x d3y aµ(x)aν(y)

∫
d3k keik(x−y)

∫
d3q

(
−4kαq

α

[
kµqν − kσqσηµν + kνqµ

(q2 −m2)3

]
+ 2kαkβ

[
2ηαβqµqν

(q2 −m2)3
− 8

qµqνqαqβ

(q2 −m2)4
− q2ηαβηµν

(q2 −m2)3
+ 4

q2ηµνqαqβ

(q2 −m2)4

]
−2m2ηµνkαkβ

[
ηαβ

(q2 −m2)3
− 4

qαqβ

(q2 −m2)4

])
. (A.6)

Due to the size of the equation above we will solve the q integral line by line

I ≡− 4kα

∫
d3q qα

[
kµqν − kσqσηµν + kνqµ

(q2 −m2)3

]
=− 4

3

[
2kµkν − k2ηµν

] ∫
d3q

q2

(q2 −m2)3
=
iπ2

m

(
k2ηµν − kµkν

)
; (A.7)

II ≡
∫

d3q 2kαkβ

[
2ηαβqµqν

(q2 −m2)3
− 8

qµqνqαqβ

(q2 −m2)4
− q2ηαβηµν

(q2 −m2)3
+ 4

q2ηµνqαqβ

(q2 −m2)4

]
=

2

3
k2ηµν

∫
d3q

q2

(q2 −m2)3
+

8

5

[
4

3
kµkν − k2ηµν

] ∫
d3q

q4

(q2 −m2)4

=
iπ2

6m

[
8kµkν − 3k2ηµν

]
; (A.8)

III ≡− 2m2ηµνkαkβ

∫
d3q

[
ηαβ

(q2 −m2)3
− 4

qαqβ

(q2 −m2)4

]
=
iπ2

6m
k2ηµν . (A.9)

To simplify the calculations we used that the q integrals must be rotational
invariant, in other words, under the integration sign qµqν = 1

3
q2ηµν , qµqνqσ = 0 and qµqνqσqρ =

1
15
q4(ηµνησρ+ηµσηνρ+ηµρηνσ). Substituting the results (A.7), (A.8) and (A.9) in equation (A.6),
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we obtain the Maxwell term

Maxwell =
ig2

96mπ4

∫
d3xd3y aµ(x)aν(y)

∫
d3keik(x−y)

[
k2ηµν − kµkν

]
=

ig2

12mπ

∫
d3x (∂µaν∂

µaν − ∂µaµ∂νaν)

=
ig2

24mπ

∫
d3x fµνf

µν , (A.10)

where fµν = ∂µaν − ∂νaµ is the field strength.
The calculation of the Maxwell and the Chern-Simons terms can be summa-

rized by the Feynman diagram on right hand side of FIG. [3.1]. If we wished, we could proceed
with our calculations and obtain terms with higher derivatives in the gauge field. To do this
we should have considered higher orders when we expanded 1

(k+q)2−m2 . We also could have
considered terms with higher order in the gauge field in the series (A.3). One of the possible
terms is εµνρaµaνaρ, this term is identically zero in our case, but in non-abelian theories this
term must be taken into account.

Putting all these results together, the Thirring partition function reads

ZTh[a] =

∫
Da exp i

∫
d3x

[
1

2
aµa

µ − sign(m)
g2

8π
εµνρaµ∂νaρ +

g2

24mπ
fµνf

µν

]
. (A.11)

We can extract some useful information calculating the propagator of the Thirring effective
action, but first we rewrite it as

Seff =

∫
d3x

1

2
aµa

µ +
α

2
εµνσaµ∂νaσ +

β

4
fµνf

µν . (A.12)

We removed the constants that appear in the partition function in favour of α = −sign(m)

4π
and

β = g2

6πm
for brevity. We take the equation of motion from the effective action

aµ + αεµνσ∂νaσ + β∂νF
νµ = 0, (A.13)

that can be rewritten as

[(β� + 1) ηµν + αεµσν∂
σ − β∂µ∂ν ] aν = 0. (A.14)

The propagator is the Green function of the equation of motion

Sµν(x)Gνρ(x− y) = ηρµδ
(3)(x− y), (A.15)



44

where

Sµν(x) = (β� + 1) ηµν + αεµσν∂
σ − β∂µ∂ν (A.16)

We can perform a Fourier transformation of the equation above and obtain its counterpart in the
momentum space

Sµν(k)Gνρ(k) = ηρµ, (A.17)

where the equation of motion operator in the momentum space reads

Sµν(k) =
[
βkµkν − (βk2 − 1)ηµν + iαεµσνk

σ
]
. (A.18)

Here we traded the differential equation for a simpler one. The catch is that to obtainGνρ(x−y)

we will need to calculate the Fourier transformation ofGνρ(k). As we are interested in the poles
of the propagator we will not need to do a Fourier transformation.

Looking at the terms that appear in Sµν(k) we decompose the propagator all
in the possible second order tensors

Gνρ(k) = Aηνρ +Bενλρkλ + Ckνkρ. (A.19)

Where A, B and C are functions of k2. We propose this form imitating the kinds of therms that
appear in the equation of motion. Imposing the equation (A.17) we are able to find the constants
A, B and C that make the propagator we proposed be the correct one.

ηρµ = Aβkµk
ρ + βCk2kµk

ρ − A(βk2 − 1)ηρµ −B(βk2 − 1)ε σρ
µ kσ

− C(βk2 − 1)kµk
ρ + iαAε σρ

µ kσ + iαB(kρkµ − k2ηρµ)

=
(
Aβ + βCk2 + iαB − C(βk2 − 1)

)
kµk

ρ

+
(
iαA−B(βk2 − 1)

)
ε σρ
µ kρ −

(
iαBk2 + A(βk2 − 1)

)
ηρµ. (A.20)

Comparing the left and right hand side of the equation above the following system of equations
must be satisfied

−
(
iαBk2 + A(βk2 − 1)

)
= 1,(

iαA−B(βk2 − 1)
)

= 0,(
Aβ + βCk2 + iαB − C(βk2 − 1)

)
= 0. (A.21)
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One can easily solve this system and find

A =
1− βk2

β2k4 − k2 (α2 + 2β) + 1
,

B =
−iα

β2k4 − k2 (α2 + 2β) + 1
,

C =
β (βk2 − 1)− α2

β2k4 − k2 (α2 + 2β) + 1
. (A.22)

Substituting A, B and C in the equation (A.19) we write a closed form for
the propagator

Gνρ(k) = − 1

9g4k2m2 − 4 (g2k2 − 6πm)2

[
24πm

(
6πm− g2k2

)
ηνρ + 36iπg2m |m| ενλρkλ

+
(
g4
(
4k2 − 9m2

)
− 24πg2m

)
kνkρ

]
. (A.23)

With this we find the poles

k2
± =

α2 + 2β ±
√
α4 + 4α2β

2β2

k2
± =

9g4m2 + 48πg2m± 3m
√

9g8m2 + 96πg6m

8g4
. (A.24)

If we plot k2
± versus g2 for m = 1, see FIG. [A.1], we see that there is a value g2 for which

4m2 ≥ k2
±. The intersections between k2

+ and k2
− with the 4m2 line happen at g2 = 6π

m
and

g2 = 6π
7m

respectively.

Figura A.1: Plot for k2
± versus g2 for m = 1
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B APPENDIX B: INTERPOLATING PARTITION FUNCTION PATH INTEGRAL

Here we want to perform the path integral and find an effective action for a

Z̄I [a] ≡
∫
Dã exp i

∫
d3x

[
∓2π

g2
εµνρãµ∂ν ãρ − εµνρaµ∂ν ãρ

]
=

∫
Dã exp i

∫
d3x

[
∓1

2
εµνρãµ∂ν ãρ −

g√
4π
εµνρaµ∂ν ãρ

]
=

∫
Dã exp i

∫
d3x

[
1

2
ãµS̃

µν ãν − Jµãµ
]
,

= exp

(
− i

2

∫
d3x d3y Jµ(x)S−1

µν (x, y)Jν(y)

)
(B.1)

where S̃µν ≡ ∓εµρν∂ρ and Jµ ≡ g√
4π
εµνρ∂νaρ and to get to the second line we made the shift

ãµ → ã′µ = g√
4π
ãµ. Now the problem resides on finding S̃−1

µν (x, y). Since S̃µν is not invertible
we shall introduce a new regulated operator that returns to the old operator in the limit Λ→∞

Sµν ≡ S̃µν +
1

Λ
∂µ∂ν . (B.2)

The operator S−1
νσ obeys

Sµν(x)S−1
νσ (x− y) = ηµσδ

(3)(x− y), (B.3)

or in the momentum space

Sµν(k)S−1
νσ (k) = ηµσ , (B.4)

where Sµν(k) can be obtained by performing a Fourier transformation on Sµν(x)

Sµν(k) = ∓iεµρνkρ −
1

Λ
kµkν . (B.5)

We propose the inverse operator

S−1
νσ = αkνkσ + βηνσ + γενρσk

ρ, (B.6)

where α, β and γ are functions of k2. Imposing (B.4) we find

S−1
νσ (k) = ∓ i

k2
ενρσk

ρ − Λ

(k2)2
kνkσ, (B.7)
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or in the coordinate space

S−1
νσ (x− y) = ± 1

4π
ενρσ∂

ρ 1

|x− y|
− Λ

8π
∂ν∂σ|x− y|. (B.8)

With this result we can easily obtain

Z̄I [a] = exp

(
i

∫
d3x∓ g2

8π
εµνρaµ∂νaρ

)
. (B.9)

The term 1
Λ
∂µ∂ν that we added in the operator (B.2) can be interpreted as originating from

a gauge breaking term in the action (3.17) of the form
1

2Λ
(∂µã

µ)2. We notice that the final
partition function has no dependence in Λ, so the limit Λ→∞ is trivial.
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