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Resumo
Neste trabalho, analisamos o limite clássico para sistemas pseudo-hermitianos com um nú-
mero finito de níveis de energia. Estudando sistemas com campos complexos, descobrimos
que uma transformação canônica na teoria clássica pode ser dada por uma transformação
linear R ∈ SO(3, C). Como um caso particular, podemos transformar um campo real em
um campo complexo através desta rotação. Mostramos então que a condição que garante
que R é uma transformação canônica na teoria clássica é uma das condições necessarias
para que a teoria quântica seja pseudo-hermitiana. Propomos então um limite clássico
correto para a teoria pseudo-hermitiana. Além disso, quando o sistema não é pseudo-
hermitiano, o limite clássico produz a equação de Landau-Lifshitz-Gilbert como equação
de movimento. Essa identificação nos permite interpretar a forma algébrica do campo
externo complexo, que quebra a hermiticidade do problema, como um campo efetivo para
sistemas de dois níveis abertos. Neste sentido, afirmamos que o Hamiltoniano proposto
aqui descreve um amortecimento em sistemas de dois níveis. Como exemplo, aplicamos
esse formalismo a um análogo do Problema Rabi e mostramos possíveis efeitos mensurá-
veis.

Palavras-chave: 1. Mecânica Quântica 2. Pseudo-Clássico 3. Pseudo-Hermitiano 4.
Transformações Canonicas
RAIMUNDO, Kesley. On the Classical Theory for Pseudo-Hermitian Two-Level
Systems. 2020. Dissertação de Mestrado em Física – Universidade Estadual de Londrina,
Londrina, 2020.
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Abstract

In the present work, we analyze the classical limit of pseudo-hermitian systems with finite
energy levels. By exploring systems coupled with complex external fields, we find that a
linear transformation SO(3, C) provides a canonical transformation in the classical the-
ory. As a special case, we can rotate a real field into a complex field. On the quantum
side, we show that the condition that ensures the classical transformation is canonical is a
necessary condition so that the quantum theory is pseudo-hermitian. We then propose a
classical limit for the pseudo-hermitian theory that yields the right classical equations of
motion. Furthermore, when the system is not pseudo-hermitian, the classical limit yields
the Landau-Lifshitz-Gilbert equation as the equations of motion. This identification al-
lows us to interpret the algebraic form of the complex external field (which breaks the
hermiticity of the problem) as an effective field for open two-level systems. We argue that
the Hamiltonian proposed here describes damped system. As an example, we apply this
formalism to an analog of the well-known Rabi Problem and calculate possible measurable
effects.

Keywords: 1. Quantum Mechanics 2. Pseudo-Classical 3. Pseudo-Hermitian 4. Canon-
ical Transformations
RAIMUNDO, Kesley. On the Classical Theory for Pseudo-Hermitian Two-Level
Systems. 2020. Masters of Science in Physics Thesis – Universidade Estadual de Lond-
rina, Londrina, 2020.
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Parte I

Introduction
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1 Introduction

The simplest system with non-trivial dynamics that we can build in quantum
mechanics is the two-level system. Despite the adjective “simplest” one cannot unde-
restimate the power of such set ups. In general, they are the best-understood quantum
systems and adequately describe several physically relevant phenomena. Furthermore,
they play an important role in the understanding of more intricate configurations.

In general, we can treat a quantum two-level system as a spin 1/2 particle inte-
racting with an external magnetic field if the spatial dynamic is not taken into account.
Thus, a two-level system is governed by the Pauli equation in (0 + 1)-dimension

i
∂v

∂t
= Ĥv, with Ĥ =

σ

2 ·F and v =
 v1(t)

v2(t)

 . (1.1)

Here, v = (v1 (t) , v2 (t))
T is a two-component spinor, σ = (σ1,σ2,σ3) are the Pauli

matrices and F = (F1(t),F2(t),F3(t)) is an external field.1 Therefore, solving a two-
level system is equivalent to solving equation (1.1), which will be referred as the Spin
Equation (SE).

Since the Pauli matrices are hermitian, the hermicity of Ĥ in SE depends strictly
on whether F is real or not. In this case, due to our first notions of unitarity, one may
be tempting to associate the unitarity of the theory described by Ĥ with the reality
of F . However, as we will see throughout this work, hermicity and unitarity are not
fundamentally related. Of course, it is well known that a Hermitian Hamiltonian yields
a unitary theory, however, a unitary theory does not need to be described exclusively by
a hermitian operator [1]. In other words, there are circumstances where a non-hermitian
operator, and consequently, complex external fields, yield a well defined quantum unitary
theory.

The latter statement opens a range of physical theories that we can achieve ex-
clusively with the requirement of unitarity, that is, theories described by non-hermitian
Hamiltonians. As an application, we can explore unitarity conditions in quantum open-
systems, since non-hermitian Hamiltonians are often found in this context [2]. These
kinds of systems are intended to be quantum systems that interact with the environment
in which they are embedded. Although this interaction is well-formulated in classical
physics, it is not yet fully comprehended at the quantum level. Therefore, we may get
some insight about the true nature of these problems from the relation of unitarity and
non-hermicity.
1 We are setting γ = −1, where γ = gq

2m with q , m and g being, respectively, the charge, mass and the
g-factor of the spin 1/2 particle. Also, in this description, F has dimension of energy.
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Despite the difficulties in non-hermitian systems, non-unitary theories have been
acquiring some attention in the physics community through the study of a certain class of
non-hermitian operators called pseudo-hermitian operators (PHOs). PHOs define the so-
called pseudo-hermitian quantum mechanics (PHQM). In PHQM, the freedom in defining
an inner product in the associated Hilbert spaces is explored to recover the unitarity of a
theory. The choice of inner product in some Hilbert spaces is indeed a freedom, since we
cannot identify it by any measurement. In this context, we may think that the notion of
non-unitarity arises because we are using the “wrong” inner product.

The liberty in choosing the inner product has already been studied long ago by Di-
rac and Pauli, among others [3–8]. These early developments were attempts in recovering
unitarity using what they called indefinite-metric quantum theories. Here, the termino-
logy “indefinite-metric” stands for non-positive-definite inner products. More recently,
non-hermitian Hamiltonians with real eigenvalues were considered (see [9], for instance).
Later on, a series of papers [1, 10–13] exploring whether a Hamiltonian must be hermi-
tian or not was proposed. The authors argued that a weaker and physically transparent
condition for the reality of the spectrum of the Hamiltonian operator Ĥ is PT -symmetry,
where P stands for the parity operator and T stands tor the time-reversal operator2.
Also, they showed that if Ĥ has an unbroken PT -symmetry, there is an operator C,
commuting with Ĥ, that allows one to define a positive-definite inner product, with a
metric operator given by η = CPT . Further on, the question of what are the necessary
and sufficient conditions for the reality of the spectrum of a linear operator were explo-
red in [14–18]. It turns out that the answer to this problem initiated the research in the
pseudo-hermitian quantum mechanics, in which the PT -symmetry and the C operator are
included, but do not play a fundamental role. Indeed, it can be shown from PHQM that
η = CPT is just an example of a positive-definite metric operator [19]. There are several
contexts where pseudo-hermitian operators appear [19]. In special, recent treatments on
topological aspects of non-hermitian systems use the framework of PHQM [20–28].

A point explored by the PHQM framework is that a non-unitary similarity transfor-
mations between operators that act in different Hilbert spaces with possible two different
inner products can be established. On the other hand, it is well-known that quantum ca-
nonical transformations are generated by similarity transformations, even if they are not
implemented by unitary operators [29]. In addition, for systems with infinite energy le-
vels, a physical meaning for the canonical transformations can be established by examining
the classical limit of the theory [17, 19, 30]. This procedure is called η-pseudo-hermitian
canonical quantization.

In the present work, the important observation is that, when dealing with sys-
tems with finite energy levels, there is no classical correspondence a priori. Nevertheless,
2 〈x| P |ψ, t〉 = ψ (−x, t) and 〈x| T |ψ, t〉 = ψ (x,−t), where for any complex number Z ∈ C, Z denotes

the complex conjugate of Z. Also, throughout this text, C denotes the set of complex numbers.



5

quantum theories for systems with finite energy levels can still have a h̄→ 0 limit . This
limit yields what is called pseudo-classical mechanics [31–33], which consists of using
Grassmann variables as phase-space coordinates for fermionic degrees of freedom. In this
picture, the algebra of Grassmann variables is quantized to an anti-commutator, as is
usually done for quantization of the algebra of fermionic degrees of freedom, such as spin.

In this paper, the pseudo-hermitian treatment will be extended to the pseudo-
classical framework. Despite the existence of pseudo-classical mechanics, its relation with
pseudo-hermitian theories has not yet been fully analyzed. Indeed, the aim of this work
is to exploit this relation at the level of canonical transformations, considering both the
pseudo-hermitian quantum theory and its pseudo-classical limit. For this purpose, com-
plex external fields will be considered, which turn out to define, in general, non-unitary
systems. We then study the pseudo-classical-quantum correspondence for the theory in
order to assign a physical meaning for the complex fields. In exploring the consequences of
this correspondence, we find that there is an interesting case where, through a SO(3, C)

canonical transformation, a real field can be promoted to a complex field. We interpret
the results and provide possible experimental tests for the theory.

This work is organized as follows: in Chapter 2 we present the precession equation
for a magnetization vector, as well as the Landau-Lifshitz-Gilbert equation, which descri-
bes a damped precession movement for a magnetization vector. In chapter 3 we present
the pseudo-classical theory which gives the quantum theory for a spin 1/2 particle af-
ter canonical quantization. We then present a classical limit for this quantum theory in
order to assign a physical meaning for complex fields. Also in this chapter, we present
a canonical transformation between two general pseudo-classical theories with complex
fields, which gives, among other things, a transformation of real field into a complex one.
In Chapter 4 we present the pseudo-hermitian framework, which we use to interpret the
results from Chapter 3. Also, we present a method to find the metric operator for a
specific class of systems, which are the ones we are interested in. In Chapter 5 we discuss
the η-canonical quantization scheme in order to motivate the correct classical limit for
pseudo-hermitian systems, that is, the one that properly renders the notion of physical
equivalence. In Chapter 6 we present a particular choice of for the generic external field,
which in turn, defines a specific problem. In chapter 7 we explore possible experimental
tests for the given theory, through possible measurable effects. Finally, in chapter 8 we
give some final remarks and future perspectives for this work.
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Parte II

Pseudo-Classical Framework
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2 Classical Magnetization

2.1 Precession Equation
It is well-known that quantum descriptions of particles with half-integer spin, such

as the electron, do not have a classical correspondent. However, we also know that there
are macroscopic consequences of the concept of half-integer spin, such as those in a Stern-
Gerlach experiment, for instance. The latter comes from the fact that a spin 1/2 particle
has an intrinsic magnetic moment. For this reason, it is interesting for us to look at how
a magnetic moment behaves when immersed in an external magnetic field.

Classically, the magnetic moment of a particle µ is a measure of how much it feels
a torque when immersed in a magnetic field B. The resulting torque τ in this system is
given by

τ = µ×B . (2.1)

Since the resulting torque will always be perpendicular to the plane formed by µ and
B, when the magnetic moment is not in the same direction of the magnetic field, µ will
move towards τ at each instant changing its direction. When B is constant, Eq. (2.1)
describes what is called precession movement. We then say that µ describes a precession
movement around B.

For a charged particle with angular orbital moment L, there is an associated
magnetic momentum

µ = γL =
gq

2mL . (2.2)

If we take the electron as an example, then g ≈ 2 and γ < 0. This allows one to write
Eq. (2.1) as

L̇ = γL×B , (2.3)

with the dot over L denoting the time derivative of L. For the sake of simplicity, as we
did in Eq. (1.1), we will set γ = −1 throughout the text. Therefore, we write Eq. (2.3)
as

L̇ = −L×B . (2.4)

Again, note that B has dimension of energy. Furthermore, despite the fact that the
precession movement of L occurs only when B is constant, Eq. (2.4) will be referred as
a precession equation even when B is time-dependent.

The interaction between the magnetic moment and the magnetic field is described
by the Hamiltonian

H = −µ ·B . (2.5)
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Hence, denoting the norm of B as B and the norm of µ as µ, the total energy of the
system can assume values from H = −µB, that is when µ is parallel to B, to H = µB,
that is when µ is anti-parallel to B. From the latter we also infer that, when the total
energy is not conserved, we expect that the magnetization tends to align parallel to the
external field, which is the minimum-energy configuration.

Just for completeness, we can also derive the precession equation from (2.5) th-
rough Hamilton’s equations. To achieve the latter, let us consider a charged particle such
that all the magnetic moment comes from its angular momentum L. We then can write
explicitly

L = r× p , (2.6)

in some frame of reference such that r is the position of this particle and p is its linear
momentum. In this case, Hamilton’s equation

ṗi = −
∂H

∂ri
= − [p×B]l and ṙl =

∂H

∂pi
= − [r×B]i (2.7)

leads to
L̇i = − (rkpi − ripk)Bk = −εijkLjBk , (2.8)

which in a vector notation is just the precession equation1 (2.4), as it should be.
The precession equation is also often found in the literature as

L̇ = L×ωL , where ωL = γB (2.9)

is called the Larmor frequency.

2.2 Landau-Lifshitz-Gilbert Equation
It is an experimental fact that the phenomenon of magnetic saturation occurs

when a ferromagnetic material is subject to a very intense external field. In a simple way,
with the increase of the external field, there is a critical point where the system can no
longer absorb energy in the magnetization. Instead, it will dissipate the acquired energy.

As we see from (2.5), sticking with the particular case of a magnetization which
precesses around a magnetic field, the energy loss means that the magnetization will
eventually align with the external field. This describes a characteristic movement that
will be referred to as damped precession.

In general, a realistic description of a mechanism of this kind is very complex.
Indeed, in the bulk of some material, the energy dissipation may be described by a
highly non-linear differential equation that can include chaotic motion [35]. However, it
is possible to study this phenomenon including an ad hoc term in the equation of motion
1 As in Eq. (2.8), throughout this work a sum over repeated indices is assumed
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that corresponds to the damping. In 1935, Landau and Lifshitz suggested a damping
term which gave rise to the Landau-Lifshitz equation

u̇ = −u×B − αu× (u×B) . (2.10)

Here, α is a real dimensionless parameter that controls the damping intensity and B has
to be taken as the resulting effective field of all possible internal and external fields. Also,
u is taken to be the unitary magnetization

u =
µ

|µ|
. (2.11)

Although the Landau-Lifshitz (LL) equation has done well in fitting a certain
amount of available data, in 1956, Gilbert [36] suggested another version of the damping
term that experimentally best describes the magnetization when the energy loss is large
[37]. The main difference from the LL damping is that the one provided by Gilbert
depends explicitly on the total derivative of u, which means that the damping is smaller
when the magnetization change is slower. Explicitly, the Gilbert damping is

u̇ = −u×B + αu× u̇ . (2.12)

Iterating the latter equation, we obtain

u̇ = − 1
(1 + α2)

u×B − α

(1 + α2)
u× (u×B) . (2.13)

The resulting equation is called the Landau-Lifshitz-Gilbert (LLG) equation. The form of
Eq. (2.13) when α � 1 is clearly the LL equation. In this sense, the LLG equation is a
general form of the LL equation.

Later on, in 1996 Slonczewski [38] changes the equation in order to account for
the spin-transfer torque effect. The resulting equation is called Landau-Lifshitz-Gilbert-
Slonczewski equation. However, in the present work we are mainly interested in the
simplest dissipative system described kinematically by a damped precession movement,
which is the one-particle system. This means that the spin-transfer torque effect, which
is associated with spin waves and lattices, is neglected. For this purpose, we will consider
with the LLG equation and refer to α as the Gilbert damping.

An important concept to take into account here is that Eq. (2.13) is a classical
phenomenological equation. Moreover, we stress that it is an equation for dissipative
systems. We want to write the LLG equation as a classical limit of some quantum theory.
However, it is not that simple to just guess which quantum theory would give us the desired
result. So, we can try the other way around, that is, we can perform a quantization of the
LLG equation, so that we have our quantum-dissipative theory. However, we must recall
that we are discussing magnetization from a classical point of view. This is relevant due
to the fact that we cannot obtain a quantum theory that describes a spin system from
a classical theory in the usual sense. Despite that, we can perform the latter from the
perspective of pseudo-classical mechanics.
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3 Pseudo-Classical Theory

3.1 Grassmann Numbers
Although there is no classical correspondent for the spin, there is a theory in the

limit h̄ → 0 for systems with fermionic degrees of freedom. This theory is the so called
pseudo-classical mechanics [31, 32] and it is based on an extension of the classical phase-
space to incorporate fermionic degrees of freedom (besides the bosonic ones), described by
anti-commuting variables. In this case, the “pseudo-classical” term means that, although
it is not a classical theory, there is a quantization procedure such that a quantum theory
representing spins is obtained, unlike the classical magnetization in the previous chapter.
For this purpose, we aim in this section to present what are the anti-commuting variables,
which are also referred as Grassmann numbers.

We start by considering the quantities ξi, for i = 1, 2, ...,n, forming a set of
generators an n-dimensional Grassmann algebra. The latter says that the ξi’s fulfill

ξiξj + ξjξi = 0 , (3.1)

which defines the product in the Grassmann algebra. As a special case, ξ2
i = 0. As

one can check, in an n-dimensional Grassmann algebra there are 2n possible independent
products between the Grassmann generators which can be built. Namely, they are all the
possibles independent products between the ξi’s, together with the unit, which is denoted
by 1. As an example, since it will be interesting for us later, the n = 3 case has the
following 23 = 8 independent products:

1, ξ1, ξ2, ξ3, ξ1ξ2, ξ2ξ3, ξ3ξ1, ξ1ξ2ξ3 . (3.2)

Since the the ξi’s are taking to be elements of an n-dimensional algebra, they form
a vector space whose dimension is 2n. In this sense, we can expand any function in terms
of these independents products. Namely for the n = 3 case,

fa = a0 + aiξi + aijξiξj + aξ1ξ2ξ3 , (3.3)

where we have summed over repeated indices. When {a0, ai, aij , a} are just complex
numbers, which turns out to be our case, fa is called in literature as a supernumber.

Since we will construct classical mechanics from a variational principle, it is impor-
tant to specify how to construct real supernumbers, so that we can write actions properly.
For this purpose, in the following we shall use an anti-involution such that the generators
are real under its action. That is,

(fa + fb)
∗ = f∗a + f∗b , (fafb)

∗ = f∗b f
∗
a and ξi = ξ∗i . (3.4)
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Next we define left and right derivatives of general supernumbers
∂L
∂ξi

(ξjξk) = δijξk − δkiξk = −
∂R
∂ξi

(ξjξk) , (3.5)

where ∂L means that we take derivatives from the left (first in j and after in k). On
the other hand, ∂R means that we take derivatives from the right (first in k and after in
j). However, by means to simplify the notation, we will always express the derivatives as
taken from the left, that is,

∂ ≡ ∂L (3.6)

and when we have to take ∂R derivatives we will compensate the sign, as in Eq. (3.5)

3.2 Pseudo-Classical Mechanics
In order to incorporate supernumbers in classical mechanics, one extends phase-

space such that the generators ξi can be regarded as actual phase-space coordinates trans-
forming as vectors under the O(n) group [31–33]. In this case, since we are not interested
in bosonic degrees of freedom, that is, we will only consider a single electron fixed in
space, the present pseudo-classical theory will only depend on Grassmann variables.

A simple O(n)-invariant pseudo-classical theory is given by the action [32]

S =
∫ tf

ti
dt
(
i

2ξiξ̇i −H ({ξi})
)

. (3.7)

whose equation of motion is
ξ̇i = −i

∂H

∂ξi
. (3.8)

For the special case n = 3, ξi transforms as a vector under O (3). In this case, by
requiring a rotational and parity invariant theory, H must be of the form

H = − i2εijkξiξjFk , (3.9)

where Fk transforms as a pseudo-vector (like the magnetic field). In this case, the equa-
tions of motion are given by

ξ̇i = −εijkξjFk , (3.10)

which is the analog of the classical precession equation (2.4), that is, in analogy to a
magnetic moment immersed in a magnetic field F = (F1,F2,F3). If ξ = (ξ1, ξ2, ξ3), Eq.
(3.10) can be written in vector notation as

ξ̇ = −ξ×F . (3.11)

Since we want to perform canonical quantization of this theory, we must evaluate
the canonical conjugate momentum

πi =
∂L

∂ξ̇i
= − i2ξi . (3.12)
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It is immediate that this is a constrained system, whose constraints are given by

χi = πi +
i

2ξi . (3.13)

The Poisson brackets for any variables f and g is given by

{f , g} = ∂Rf

∂ξi

∂Lg

∂πi
− (−1)PfPq

∂Rg

∂ξi

∂Lf

∂πi
, (3.14)

where Pf and Pq stand for the parity of f and g, respectively, which assume the value
0 for odd functions and 1 for even ones. Also, as one can check, the constraints do not
evolve on time since {H,χi} = 0. Therefore, for the canonical quantization scheme, we
need to replace the Poisson brackets with the Dirac brackets [33,34]

{f , g}D ≡ {f , g} − {f ,χi}|{χi,χj}|−1{χj , g} . (3.15)

Hence, since
{χi,χj} = −iδij , (3.16)

the fundamental Dirac brackets are given by

{ξi, ξj}D = −iδij . (3.17)

The quantization scheme for anti-commuting variables consists in promoting the
ξi’s to operators and using the Dirac rule

[
ξ̂i, ξ̂j

]
+
= i {ξi, ξj}D = δij , (3.18)

Hence, under canonical quantization, the Grassmann algebra is promoted to a Clifford
algebra. In the present work, we consider a straightforward representation for the Clifford
algebra, given by the Pauli matrices:

ξ̂i →
σ̂i√

2
, for i = 1, 2, 3 . (3.19)

In what follows, we will always choose this representation, unless otherwise specified.
We then perform the canonical quantization of (3.9) using (3.18), which results in

the quantized Hamiltonian

Ĥ = −i
(
F1ξ̂2ξ̂3 + F2ξ̂3ξ̂1 + F3ξ̂1ξ̂2

)
, with

[
ξ̂i, ξ̂j

]
+
= δij . (3.20)

So, in terms of the chosen representation (3.19), we can write (3.20) as

Ĥ =
1
2 (F1σ̂1 + F2σ̂2 + F3σ̂3) . (3.21)

From the SE, equation (1.1), we see that Ĥ is exactly the quantum problem that
defines a two-level system interacting with an external magnetic field F = (F1,F2,F3).
In this case, since we have obtained (3.21) from a quantization of a classical theory with
Grassmann variables ξi’s, we can say indeed that (3.7) can be regarded somewhat as
a classical theory for a two-level system. Also, this realization with the Pauli matrices
ensures that Ĥ is Hermitian, Ĥ = Ĥ†, when F is real.
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3.3 Classical Limit
At this point, it is worth recalling that we aim to write a quantum theory that

has the LLG equation as its classical limit. First of all, we start by letting the external
field F to be complex. In this sense, Ĥ is non-hermitian, that is H 6= H†, and we expect
a non-unitary theory. Then, we define the classical limit as the mean value of the σ̂i’s
operators, that is,

σi (t) = 〈ψ| σ̂i |ψ〉 , (3.22)

where |ψ〉 is some time-dependent state. In this case, using the Schrödinger equation, we
obtain

σ̇i (t) = i 〈ψ|
(
Ĥ†σ̂i − σ̂iĤ

)
|ψ〉 . (3.23)

Also, it is convenient to explicitly write

Ĥ =
1
2Fiσ̂i =

1
2Re (Fi) σ̂i +

i

2Im (Fi) σ̂i , (3.24)

which in this case, from equation (3.23) we obtain

σ̇i (t) =
i

2 〈ψ|Re (Fj) [σ̂j , σ̂i]− iIm (Fj) {σ̂j , σ̂i} |ψ〉

= −εijkσj (t)Re (Fk) + Im (Fi) 〈ψ|ψ〉 . (3.25)

Due the non-hermicity of Ĥ, the quantity 〈ψ|ψ〉 may be not constant for every t.
Because of that, it is convenient to define the quantity

ni ≡
σi (t)

〈ψ|ψ〉
=
〈ψ| σ̂i |ψ〉
〈ψ|ψ〉

, (3.26)

whose time-evolution is given by

ṅi =
1
〈ψ|ψ〉

[
σ̇i (t)− ni

d

dt
(〈ψ|ψ〉)

]
=

σ̇i (t)

〈ψ|ψ〉
− niIm (Fj) nj . (3.27)

Therefore, using the expression (3.25) for σ̇i (t), we obtain after some algebra,

ṅ = −n×Re (F )−n× (n× Im (F )) . (3.28)

It follows that when the external field is real, that is, when Im (F ) = 0, Eq.
(3.28) coincides with Feynman’s results in [40] and the equation of motion reproduces
the classical precession equation (3.11). However, for Im (F ) 6= 0, Eq. (3.28) has an
additional term that leads to damping in the dynamic of n that could not be obtained
from (3.7) just by taking F to be complex from the very beginning. In other words,
if we take F to be complex in Eq. (3.9) we still have the result (3.11) without the
second term present in (3.28). Indeed, the damping term on (3.28) can only be obtained
from a variational principle if the Lagrangian has a term ξiξjξk, so that when we take
the derivative in ξl, only quadratic monomials would remain in the equations of motion.
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However, to construct a scalar with cubic terms, we can only contract the indices ijk with
εijk, δij and another field Fi. Then, if we want parity invariance, we are only left with
the term ξiξjξkFiδjk. In this case, the equations of motion for this contribution are

ξ̇i = Fiξjξj + Fj (ξiξj + ξjξi) , (3.29)

which also vanishes. In other words, we would have no damping in the pseudo-classical
theory since the anti-commutator of the Grassmann variables vanishes.

As expected, damping in Eq. (3.28) arises exactly from the imaginary part of F ,
which is what breaks the hermiticity of Ĥ in Eq. (3.21). Also, considering that F is
time-independent, the Lagrangian in Eq. (3.7) is also time-independent. In this case,
the energy of the system is conserved and we would not expect damping, that is, the
equations of motion are (3.11). However, when the energy is not conserved, we cannot
write a pseudo-classical theory from a variational principle. Instead, we can only start
from a non-unitary quantum theory and take the classical limit to obtain the result (3.28).

There is a similarity between (2.13) and (3.28). If we choose the external field to
be

F =
1 + iα

1 + α2G , (3.30)

then the classical limit for Ĥ yields the LLG equation for every real external fieldG. Also,
another feature that we must emphasize is that the LLG equation is a phenomenological
equation, while (3.28) was obtained from a classical limit of a quantum theory.

At this point, all these ideas strongly suggest that a complex external field leads
to damping. In this sense, we can interpret a complex field as an effective field that
describes the interaction of the system with the environment. Furthermore, the specific
form of (3.30), which yields the LLG equation, also says that we can interpret the Gilbert
damping α as a coupling constant for this interaction. Therefore, when we turn it off,
that is, set α = 0, then the external field is real and there is no damping at all.

3.4 Canonical Transformations
In order not to loose focus, so far we have presented a classical theory for a (non-

relativistic) spin 1/2 particle; showed that, if the external field has a non zero imaginary
part, the theory is non-unitary and the classical limit yields a damped precession equation.
We have then concluded that complex fields describe damping, while real fields do not.
From now on, we aim in this section to perform a canonical transformation in the pseudo-
classical theory with a complex field and explore the consequences. However, let us first
briefly introduce what is a canonical transformation in the usual (bosonic) sense.
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A canonical transformation is a change of the canonical coordinates ρi (t) →
ρ′i (ρ1, ..., ρ2n, t)1 that preserves the symplectic structure Ω =

∑n
i=1 dρi ∧ dρi+n of the

2n-dimensional phase-space. Equivalently, a canonical transformations is leaves the Pois-
son brackets {ρi, ρj} = Ωij invariant, where Ωij are the components of the symplectic
form Ω.

The pseudo-classical mechanics was obtained by extending the phase-space to in-
corporate Grassmann degrees of freedom. In this case, we expect that the notion of a
canonical transformation is rather straightforward: a linear transformation R that takes
the set of Grassmann numbers ξ into another set of Grassmann numbers ζ(ξ) is canonical
if

{ξi, ξj} = {ζi, ζj} . (3.31)

Furthermore, there is the important statement that two systems that differ by a time-
independent canonical transformation are said to be physically equivalent to each other.

As a preamble to this construction, in order to simplify the presentation, we will
set F2 in H, Eq. (3.9), to zero. Note that, even when F is complex, the quantum theory
that describes the interaction between the system with F allows us to set some component
Fi = 0 for both its real and imaginary part, without losing information or generality. This
is what is called a reduction of the external field and it is possible due to constraints on
the SE that allow us to construct one solution from another [41].

We are then left with the following pseudo-classical theory

H = −i(F1ξ2ξ3 + F3ξ1ξ2) , (3.32)

whose canonical quantization yields

Ĥ = −i(F1ξ̂2ξ̂3 + F3ξ̂1ξ̂2) ,with
[
ξ̂i, ξ̂j

]
+
= δij . (3.33)

Or choosing the representation (3.19),

Ĥ =
1
2(F1σ̂1 + F3σ̂3) . (3.34)

One should note here that the Dirac brackets (3.17) are invariant under the action of
O(n, R), recalling that we imposed rotational and parity symmetry in the action (3.7). We
expect that rotations are canonical transformations in this sense. However, we claim that
the relations in Eq. (3.17) are also invariant under linear transformations R ∈ O(n, C),
where we stress that C stands for the field of complex numbers. To see what this implies
and discuss possible consequences, we present the following linear transformation


ζ1

ζ2

ζ3

 =
1

B2
1 +B2

3


F1B1 −B3F3 0 F1B3 +B1F3

0 −B2
1 −B2

3 0
F1B3 +B1F3 0 − (F1B1 −B3F3)



ξ1

ξ2

ξ3

 . (3.35)

1 For compactness, the n canonical coordinates are qi (t) = ρi (t) and their respective canonical conju-
gate moments are pi (t) = ρi+n (t).
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Under the condition
F 2

1 + F 2
3 = B2

1 +B2
3 , (3.36)

It can be checked that the transformation (3.35) is canonical even when F and B
are complex entries.2 In other words, it can be shown that the Poisson brackets for the
ζi’s variables are invariant even for {F1,F3,B1,B3} ∈ C.

Moreover, if we write (3.35) as ζi = (R)ijξj , we see that det (R) = 1 and R ∈
SO (3, C). In other words, the matrix R ∈ SO (3, C) is orthogonal and it is defined over
the field of the complex numbers C. In addition, R is idempotent, R2 = I.

The resulting Hamiltonian that we obtain when we perform the transformation R,
under (3.36), is given by

HI = −i (B1ζ2ζ3 +B3ζ1ζ2) , (3.37)

whose canonical quantization leads us to

ĤI = −i
(
B1ζ̂2ζ̂3 +B3ζ̂1ζ̂2

)
, with

[
ζ̂i, ζ̂j

]
+
= δij . (3.38)

Therefore, by reproducing the quantization procedure previously discussed, the Clifford
algebra can be realized with Pauli matrices so that

ĤI =
1
2(B1σ̂1 +B3σ̂3) . (3.39)

The latter result is also simplified in the sense that B2 = 0, although it still is a general
field, according to [41].

From (3.28) we showed that, when Im (B) 6= 0, there is damping in the theory.
Also, we have just argued that we can connect two theories with complex external fields
through a canonical transformation. Furthermore, canonical transformations also define
a physical equivalence between theories. In this case we see that, when Im (F ) 6= 0 and
Im (B) 6= 0, both Hamiltonians Ĥ and ĤI generate damping, which means that the
associated theories are non-unitary. On the other hand, when Im (F ) = 0 and Im (B) =

0, both the Hamiltonians Ĥ and ĤI generate unitary theories, without damping.
Let us now turn our attention to the particular case in which Im (B) = 0 and

Im (F ) 6= 0. This scenario is interesting due the fact that we can, through a canonical
transformation, take a real field B into a complex field F . This possibility raises the
question of how can a unitary theory be physically equivalent to a non-unitary theory.
Naturally, the two descriptions are not equivalent. As we will show in next section, when
B is real, F fulfills the pseudo-hermicity condition that is associated to a unitary theory,
even if F is complex. However, if a complex field F defines a unitary theory, it cannot
produce the damping precession equation as its classical limit, although that is what one
would expect for a complex field. Even though things may seem inconsistent, we hope
that the next chapter clears the confusion.
2 Note that there is no reason, a priori, to assume that Fi and Bi are complex, apart from the fact that,

if they are, (3.35) still is a canonical transformation.
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For that purpose, from now on, we will only examine the particular case where
Im (B) = 0 and Im (F ) 6= 0. This particular restriction captures the essential points to
be studied in the present work.
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Parte III

Pseudo-Hermitian Framework
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4 Pseudo-Hermitian Operators

4.1 The Inner-Product Problem
In order to explain how a complex field defines a unitary theory, we will first look

at the main reason why unitarity can be broken. This reason is intrinsically related with
the notion of orthogonality. In other words, the loss of unitarity lies on the fact that the
eigenvectors with distinct eigenvalues of a non-hermitian Hamiltonian are not, in general,
orthogonal to each other. Beyond that, the notion of orthogonality between two vectors
v,u ∈ H, where H is some vector space, only arises when we define an inner product1

〈, 〉 : H×H → C in H. Moreover, since in our specific case H = C2, we start with the
natural choice

〈v,u〉 =:
(
v∗1 v∗2

) u1

u2

 . (4.1)

On the other hand, are other choices physically relevant?
The answer to the latter question is straightforward: the true nature of the inner

product in quantum physics cannot be measured directly. In other words, the final and
only test of a theory is the experiment. In this sense, since in quantum physics only
statistics of quantities arising from inner products are measurable, namely, probabilities,
apparently we are free to define any inner product structure in H, provided we get the
same result from experiments. Of course, we always think that the fewer and the simpler
additional structures, the better. However, in dealing with non-unitary systems, we do
not yet have a consistent notion for probability and measurement. The latter suggests
that we are probably dealing with an incorrect Hilbert space realization, and, perhaps,
we may have a non-canonical inner product that recovers the notion of probability and
measurement.

Let us illustrate the latter statement with the following brief example [19]: Let H
be a 2-dimensional Hilbert space and |v〉 = (v1, v2)T ∈ H be a generic state in H. Also,
consider an operator Ĥ : H → H such that

Ĥ |v〉 =

 v1

v1 − v2

 . (4.2)

If one uses the canonical basis2 as a basis for H, then the matrix representation of Ĥ is
given by

Ĥ =

 1 0
1 −1

 . (4.3)

1 If the notion of “inner product” is not natural, see appendix A.
2 The canonical basis is

{(
1
0

)
,
(

0
1

)}
.
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In this case, Ĥ is non-hermitian with respect to the canonical inner product (4.1). Howe-
ver, if we write the same operator in the basis

B =


 1

0

 ,
 1

1

 , (4.4)

then Ĥ is represented by the matrix

Ĥ =

 1 1
1 0

 , (4.5)

which is hermitian with respect to (4.1), that is,〈
v, Ĥu

〉
=
〈
Ĥv,u

〉
. (4.6)

However, if we define another inner product, denoted by 〈, 〉η, given by

〈v,u〉η =: 〈v, ηu〉 =
(
v∗1 v∗2

) 1 −1
−1 2

 u1

u2

 , (4.7)

the basis B is now orthogonal and Ĥ is Hermitian in that basis. In other words,〈
v, Ĥu

〉
η
=
〈
Ĥv,u

〉
η

. (4.8)

The main point is already clear. The notion of hermicity of an operator Ĥ depends
on whether the basis of the Hilbert where Ĥ acts is orthogonal or not. Consequently, the
notion of hermicity depends on the inner product in H. In addition, since a change of
orthogonal basis is implemented by a unitary transformation T̂ , a hermitian operator Ĥ
transforms like3 Ĥ ′ = T̂ ĤT̂ † and its hermicity condition Ĥ† = Ĥ, namely Eq. (4.6),
holds with the same inner product. That is Ĥ ′† = (T̂ ĤT̂ †)† = T̂ ĤT̂ † = Ĥ ′. However,
when the new basis is non-orthogonal, we can change the inner product in H in order to
find a representation such that a non-hermitian operator turns into a hermitian operator.

The question that naturally arises is the following: given a non-hermitian operator
Ĥ : H → H, is it always possible to find an inner product 〈, 〉 : H×H → C in H
that renders Ĥ hermitian? In general, the answer is no. However there is a class of
operators in which the answer is yes, namely, the class of pseudo-hermitian operators.
These operators define a generalization of the standard quantum mechanics called Pseudo-
Hermitian Quantum Mechanics (PHQM). By generalization we mean that the standard
QM is a special case of the PHQM, that is, when the inner product is (4.1).

Any vector space with an inner product has an induced notion of norm and,
consequently, a induced notion of metric.4 In this sense, we interpret (4.7) as 〈v,u〉η =:

3 Provided T̂ is time-independent. Otherwise, H ′ = i∂T̂
∂t T̂

† + T̂HT̂ †.
4 See appendix A.
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〈u |η| v〉 where η : H → H is often called the metric operator. However, one should be
very careful with names since an authentic metric in a vector space is always a positive-
definite structure and, in general, η can be non-positive-definite. Furthermore, η has not
even the domain and range to be an authentic metric. The cases where η is non-positive-
definite will be commented through the text when necessary in order to avoid confusions.
Nevertheless, from now on, we will refer to an inner product 〈, 〉η as given by a metric
operator η. Furthermore, with this interpretation, it may be clearer that QM with η = 1
is somewhat a special case of PHQM.

4.2 Definitions
Let us now be a little more consistent by writing some definitions and names

properly. We define a pseudo-hermitian as an operator acting on a finite-dimensional
Hilbert space H with inner product 〈, 〉, for which there is a hermitian operator η such
that H is hermitian according to the inner product 〈, 〉η defined by

〈φ,ψ〉η ≡ 〈φ, ηψ〉 . (4.9)

In this section, we will start by motivating the definition of pseudo-hermicity often
found in the literature by showing some useful consequences of pseudo-hermicity.

Consider a non-hermitian linear operator Ĥ : H → H according to the canonical
inner product 〈, 〉, and two generic elements of H given by |ψ〉 and |φ〉. Then the following
relation holds: 〈

φ, Ĥψ
〉
=
〈
Ĥ†φ,ψ

〉
=
〈
ψ, Ĥ†φ

〉
, (4.10)

where the over-line stands for complex conjugation. Suppose now that we define another
inner product 〈, 〉η in H, defined by a hermitian metric operator η : H → H, given by
(4.9). In this case, Eq. (4.10) becomes

〈
φ, Ĥψ

〉
η
=
〈
Ĥ†φ,ψ

〉
η
=
〈
φ, ηĤψ

〉
=
〈
(ηĤ)†φ,ψ

〉
. (4.11)

Thus, if η is the metric that renders Ĥ to be hermitian according to 〈, 〉η, the operator
ηĤ : H → H must be hermitian with respect to 〈, 〉. The latter naturally says that

ηĤ = Ĥ†η (4.12)

It is clear from (4.12) that, if η is the identity, then Ĥ is hermitian. In other words, equa-
tion (4.12) says that the pseudo-Hermitian operators form a set, in which the Hermitian
operators form a subset.

Although the relation (4.12) comes out in a straightforward manner, it indeed
defines what is a pseudo-hermitian operator and we can see this as follows. Suppose Ĥ
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fulfills Ĥ = η−1Ĥ†η. In this case,〈
φ, Ĥψ

〉
η

=
〈
φ, ηĤψ

〉
=
〈
φ, η

(
η−1Ĥ†η

)
ψ
〉

=
〈
φ, Ĥ†ηψ

〉
=
〈
Ĥφ, ηψ

〉
=
〈
Ĥφ,ψ

〉
η

(4.13)

for any ψ,φ ∈ H. That is, Ĥ is hermitian according to 〈, 〉η. On the other hand, suppose
Ĥ is hermitian according to 〈, 〉η. In this case,〈

φ, Ĥψ
〉
η

=
〈
φ, ηĤψ

〉
= φ†c

(
ηcĤc

)
ψc

=
〈
Ĥφ,ψ

〉
η
=
〈
Ĥφ, ηψ

〉
=
(
Ĥcφc

)†
ηcψc = φ†cĤ

†
cηcψc , (4.14)

where φc,ψc, Ĥc and ηc are the representations for φ,ψĤ and η in the canonical basis,
respectively. Since it is true for any φ,ψ ∈ H, then ηĤ = Ĥ†η in the canonical basis.

Probabilities in QM are real numbers that arise from inner products. In addition,
it is natural to say that the probability of finding the state |ψ〉, given the initial condition
|φ〉, is the same of finding |φ〉, in the initial condition |ψ〉. Therefore, we write probabilities
as

Pφ→ψ = 〈φ,ψ〉 〈φ,ψ〉 = 〈ψ,φ〉 〈ψ,φ〉 = Pψ→φ. (4.15)

With this in mind, we expect that by endowing a Hilbert space with a metric operator,
the probabilities will be written, using (4.11), as

Pφ→ψ = 〈φ, ηψ〉 〈φ, ηψ〉 = 〈ψ, ηφ〉 〈ψ, ηφ〉 = Pψ→φ , (4.16)

which is only true if
〈φ, ηψ〉 = 〈ψ, ηφ〉 . (4.17)

Hence, if Pφ→ψ = Pψ→φ, which turns out to be a natural requirement, then η must be
hermitian. Indeed, we impose the latter in the very beginning, that is, Eq. (4.9). However,
the inner product 〈φ,ψ〉η must by definition be skew symmetric (See appendix). In this
case, we have

〈φ,ψ〉η = 〈φ, ηψ〉 = 〈ηψ,φ〉

= 〈ψ,φ〉η = 〈ψ, ηφ〉, (4.18)

which says that η must be indeed hermitian.
Finally, the definition often found in the literature is straightforward from (4.12):

A linear operator Ĥ : H → H is said to be pseudo-hermitian if there is a hermitian metric
operator η : H → H such that

Ĥ† = ηĤη−1. (4.19)

The definition (4.19) does not guarantee that η exists for a given Ĥ. Nevertheless,
if we are able to find a such metric, then Ĥ is pseudo-hermitian. In addition, (4.19)



4.3. Spectrum and Symmetry 27

also does not say how to find η even if it exists. Furthermore, even if one finds metric
operator, there is no guarantee that it will be unique or positive-definite. Indeed, there
are, in general, an infinite number of metric operators that render the same operator
hermitian.5

Apparently, this is not very practical. In other words, we would like to look at a
particular operator and say whether it is pseudo-hermitian or not, so we would not be
looking for something that does not exist. Luckily, as one may have noted so far, there
is a way of dealing with this problem by looking at the spectrum of the operator. The
latter is the subject of the next section.

4.3 Spectrum and Symmetry
LetH be a D-dimensional Hilbert space with an inner product 〈, 〉 and Ĥ : H → H

a pseudo-hermitian operator. By definition, the spectrum of Ĥ is the set of complex
numbers {En}, for 1 ≤ n ≤ D, such that the operator6 Ĥ −En is non-invertible, that is,
det(Ĥ −En) = 0. Since η is invertible by definition, using Eq. (4.19) we can write

det(Ĥ −En) = det(η(Ĥ −En)η−1) = det(Ĥ† −En) = 0 . (4.20)

Therefore, we see that there must be a one-to-one map between the spectrum of Ĥ† and
Ĥ. In addition, since the spectrum of Ĥ† is the complex conjugate of {En}, the spectrum
of a pseudo-hermitian operator must be either real or come in complex conjugate pairs.

It turns out that the converse is also true. That is, if the spectrum of a given
operator Ĥ is either real or comes in complex conjugate pairs, there is a metric operator
η that renders Ĥ hermitian. Equivalently, there is an operator η such that equation (4.19)
holds. The latter can also be seen from (4.20). The only way that Ĥ would have the same
spectrum as Ĥ† is through the existence of an invertible operator η which fulfills (4.19).

If Ĥ : H → H is a diagonalizable operator, then the condition on the spectrum of Ĥ
implies that det(Ĥ) ∈ R. One can see this by writing Ĥ in its diagonal form. In this case,
since the complex entries are complex conjugate pairs, their products will always produce
a real number. One should note, however, that the converse is not necessarily true. A
real determinant is not a sufficient condition for a given operator to be pseudo-hermitian.
Nevertheless, this is a sufficient condition for traceless 2× 2 matrices, which turns out to
be an useful information for two-level systems. One can also see this by writing Ĥ in its
diagonal form. In this case, when Ĥ is traceless, the diagonal form is proportional to σ̂3

and, consequently, even if there are complex eigenvectors, the determinant is real since
they will come in pairs.
5 This is easily seen by re-scaling the metric, although this is not the only way of seeing this.
6 There is always an implicit identity multiplying complex numbers when they are in a sum with

operators.
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Another interesting feature is that, if η1 and η2 are two metric operators that render
Ĥ hermitian, that is, η1Ĥη

−1
1 = Ĥ† = η2Ĥη

−1
2 , then there is an operator C = η−1

2 η1,
commuting with Ĥ, that is, there is a linear symmetry of Ĥ. This feature is actually what
shows that the CPT inner product is an example of a positive-definite metric operator
η [19]. Also, if there is a positive-definite operator η+, it will be not unique, however, any
two η+ and η′

+ are related according to η′+ = Â†η+Â, where Â is some invertible linear
operator commuting with Ĥ.

4.4 Soft-Limit method for the determination of a metric
operator
As concluded from the last section, we can say whether an operator is pseudo-

hermitian or not by looking at its spectrum. In this case, if we have a Hamiltonian Ĥ

whose spectrum is real, then there is a metric operator η that renders Ĥ hermitian, that
is, such that (4.19) is fulfilled. However, we still do not know how to find η. Indeed, the
problem of finding a metric operator depends strongly on the system with which we are
dealing. Because of that, we aim in this section to first define what kind of system we are
interested in, and then present a schematic way of finding a metric operator for them.

First of all, recall that the result we are trying to explore here is how an operator
defined in terms of a complex field can describe a unitary theory, so that we may further
explore the situation described in section 3.4. An important point to be noticed is that
we have two physically equivalent theories, one for a real field B ∈ R and another for a
complex field F ∈ C. We rewrite both Hamiltonians here for convenience.

ĤI =
1
2 (B1σ̂1 +B3σ̂3) , with B = (B1, 0,B3) ∈ R (4.21)

Ĥ =
1
2 (F1σ̂1 + F3σ̂3) , with F = (F1, 0,F3) ∈ C (4.22)

Since Ĥ and ĤI are related through a canonical transformation and ĤI is hermitian
according to the canonical inner product while Ĥ is not, if there is a physical equivalence
between these two theories, it must be implemented by an operator which is non unitary.7

This follows from the well-known result that quantum canonical transformations need not
be unitary transformations [29].

A quantum physical equivalence is also an isometry, that is, a linear norm-preserving
isomorphism, which consequently relies on the notion of the inner product. In this case,
since the Hilbert spaces where Ĥ and ĤI are defined will have different inner products,
we denote Ĥ : H → H and ĤI : HI → HI , with H and HI being the Hilbert spaces
spanned by the eigenvectors of Ĥ and ĤI , respectively. Also, the definition of the η-inner
7 The word unitary here means that, ifM is the operator which implements the physical equivalence,

thenM 6=M†, where the † operation is according to the canonical inner product.
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product in H is Eq. (4.9) where 〈, 〉η : H×H → C, 〈, 〉 : HI×HI → C, |ψ〉 ∈ HI , and η
is such that (4.19) holds. We stress here that the † operation in Eq. (4.19) is according
to the canonical inner product 〈, 〉.

We write the isometryM : HI → H in the following way:

∣∣∣ψη±〉 =M|ψ±〉 ,
∣∣∣ψη±〉 ∈ H , |ψ±〉 ∈ HI , (4.23)

where |ψ±〉 are eigenvectors of ĤI , while
∣∣∣ψη±〉 are the eigenvectors of Ĥ ∈ H. Conse-

quently, for systems where we can define this isometry, the operator η is given by〈
ψη±,ψη±

〉
η
= 〈Mψ±, ηMψ±〉 = 〈ψ±,ψ±〉 ⇒ η =

(
MM†

)−1
. (4.24)

There are few things we should emphasize here. First of all, it follows from (4.24)
that η is a positive-definite operator, being interpreted as the metric induced by the inner
product (4.9). Secondly, also from Eq. (4.24), if we choose any pair of vectors in HI
that differ from |ψ±〉 by a unitary transformation, the isometryM would change, albeit
leaving η invariant. Hence, the metric does not depend on a special choice of |ψ±〉 or∣∣∣ψη±〉. However, we are interested in systems where the non-hermicity of Ĥ is broken
continuously, namely by a real-valued parameter α. For instance, we are interested in
fields of the form (3.30). We will consider systems where there is a well-defined limit
α → 0, where F1 and F3 are real fields. In this case, Ĥ becomes hermitian and both
theories will only differ by a unitary transformation.

An important observation is that although the remaining unitary transformation
is indeed arbitrary, for a consistent physical interpretation we impose the condition

lim
α→0

F = lim
α→0

B ∈ R . (4.25)

By imposing Eq. (4.25), we ensure that when α → 0, Ĥ → ĤI , which consequently
implies ∣∣∣ψη±〉→ |ψ±〉 ⇒M→ 1⇒ η → 1 . (4.26)

The prescription (4.25), together with the choice of the eigenvectors of both Ĥ and ĤI

to construct η, is denoted as soft-limit in the present work.
Let us then see how to use this prescription to construct η. First of all, we have

∣∣∣ψη±〉 = 1
F1

 F3 ±E
F1

 with E± = ±E2 = ±1
2

√
F 2

1 + F 2
3 , (4.27)

from Ĥ
∣∣∣ψη±〉 = E±

∣∣∣ψη±〉, and also,

|ψ±〉 =
1
B1

 B3 ±EI
B1

 with EI± = ±EI2 = ±1
2

√
B2

1 +B2
3 , (4.28)
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from ĤI |ψ±〉 = EI± |ψ±〉. Following the soft-limit prescription, the isometryM can be
explicitly implemented by the operator

M =
1

F1EI

 B1E F3EI −B3E

0 F1EI

 , (4.29)

and the metric operator in H will be given by

η =
1

B2
1 |E|

2

 |F1|2E2
I F ∗1EI (B3E − F3EI)

F1EI (B3E∗ − F ∗3EI) B2
1 |E|

2 + |B3E − F3EI |2

 . (4.30)

As one can check, the operator η in Eq. (4.30) renders Ĥ hermitian since

Ĥ† =
E2

|E|2
ηĤη−1, and

〈
ψη±,ψη±

〉
η
= δ±± . (4.31)

We can compare this procedure with the example in section 4.1. In this case,
although Ĥ is non-hermitian according to the canonical inner product, it is hermitian
according to 〈, 〉η. Consequently, in this picture the eigenvectors |ψ±〉η are orthogonal
with respect to 〈, 〉η and the evolution will be unitary. However, it should be mentioned
that the quantum theory defined by Ĥ itself may include the case where E is not real.
In other words, we could from the very beginning start from (4.22), without the necessity
of (3.35). In this case, F1 and F3 need not satisfy the constraint (3.36) and the only
condition for η to exist is

Re (F1) Im (F1) +Re (F3) Im (F3) = 0 , (4.32)

which allows complex conjugate pairs of eigenvalues. In the latter case, E is purely
imaginary and η still is a positive-definite operator. However, (4.31) says that Ĥ should
be an anti-pseudo-hermitian, rather than a pseudo-hermitian operator.

Summarizing, for E imaginary, the condition (3.36) is not satisfied with B ∈ R

and there will be no connection between the quantum theory and the pseudo-classical
theory with a real external field. Therefore, in this present work, the conditions (3.36)
and E = EI ∈ R are assumed. Furthermore, as one can check from Eq. (4.25), the
soft-limit condition guarantees that M → 1, η → 1, ĤI → Ĥ and

∣∣∣ψη±〉 → |ψ±〉 (or
simply, H → HI), in the limit α→ 0.

Assuming that the operator Ĥ is time-independent, the dynamics of the associated
problem is obtained by simply exponentiating Ĥ. In this case, if we are interested, for
instance, in evaluating a transition amplitude between the eigenvectors of σ̂3, that is, the
states of “spin-up” and “spin-down” in HI , denoted by |±〉, we can construct these states
in H using the isometryM. This transition amplitude can be written as〈

+η,−ηt
〉
η
=
〈
+η, η exp

(
−iĤt

)
−η
〉
= −iB1

EI
sin

(
E

2 t
)

, (4.33)

where
|±η〉 =M|±〉 . (4.34)

As it should be, the transition amplitude is unitary since Ĥ is hermitian.
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5 Physical Equivalence

5.1 Canonical Transformations Again
Based on the previous example, where we recover unitarity, we further discuss the

physical equivalence underlying the isometry between two Hilbert spaces with different
inner products.

In general, we see from Eq. (4.24) that an operator Â : H → H has the same
matrix elements as an operator ÂI : HI→ HI given by

ÂI =M†ηÂM , (5.1)

that is,
(AI)ij =

〈
ei, ηÂej

〉
=
〈
ei,M†ηÂMej

〉
. (5.2)

Therefore, we can write
ÂI =M−1ÂM . (5.3)

It turns out that Eq. (5.3) says that there is a similarity relation between ope-
rators that act in HI and H. This is good in general since similarity transformations
do not change the algebra of the operators. Consequently, Eq. (5.2) defines canonical
transformations, even though M does not fulfills M†M = 1. This information is rele-
vant here because our very first notion of canonical transformations at the quantum level
was given by Dirac [42] and Weyl [43], for whom unitary transformations are canonical
transformations. This is indeed true, however, canonical transformations can also be
non-unitary.

A naive definition of a canonical transformation in quantum mechanics can be
formulated from the canonical quantization scheme, where we just replace the Poisson
brackets relations with the commutation relation, apart from constant factors. In other
words, the canonical quantization scheme strongly suggests that quantum canonical trans-
formations are the ones that leave the fundamental commutation relation

[ρ̂i, ρ̂j ] = iΩij (5.4)

invariant. From Eq. (5.4), it is clear that any transformation implemented by an invertible
operator Ĉ ({ρ̂i}) of the form ρ̂

′
i = Ĉρ̂iĈ

−1 is a canonical transformation, provided Ω
is a c-number or commutes with Ĉ (which is true for the fundamental commutation
relations). There is no reason to restrict Ĉ to unitary operators only. Therefore, any
similarity transformation as Eq. (5.3) can be interpreted as a canonical transformation
at the quantum level.
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The main point here is that our well-known notion of unitary transformations
is a linear norm-preserving isomorphism (isometry) from a Hilbert space on itself. We
commonly write the latter statement as

〈Uψ,Uφ〉 = 〈ψ,φ〉 ⇒ U †U = 1 . (5.5)

However, in quantum mechanics we need not specify a Hilbert space in defining canonical
transformations [29]. Thus, there are circumstances, such as equation (4.24), that we
can have an isometry between two different Hilbert spaces with possible different inner
products. In this case, we still can employ the concept of canonical transformations from
any similarity relation as in Eq. (5.3).

AlthoughM in Eq. (4.24) does not fulfillsM†M = 1 according to the canonical
inner product, but we stress here thatM is unitary. In Hilbert spaces with different inner
products, the concept of physical equivalence is implemented by

〈ψ,ψ〉η′ = 〈Mψ,Mψ〉η (5.6)

or, using the definition of the η-inner product in terms of the canonical product 〈, 〉

〈
ψ, η′ψ

〉
= 〈Mψ, ηMψ〉 (5.7)

or simply,
η′ =M†ηM , (5.8)

which is the generalized notion of unitary transformation. That is, a unitary operator
M : Hη → Hη′ , where 〈, 〉η is the inner product in Hη and 〈, 〉η′ is the inner product in
Hη′ , is such that (5.6) holds and. It is then clear from (5.8) that, when the isometry is
from H to itself and η = 1, thenM†M =1.

5.2 Pseudo Canonical Quantization Scheme
As it was said in the introduction, in dealing with systems with infinite energy

levels, there is a classical-quantum correspondence through the Pseudo-Canonical quan-
tization scheme. In order to better understand what this name means, let us start with
two Hilbert spaces H and HI , such that H has a metric operator η and HI has the cano-
nical inner product. Also, as before, considerM as the isometry between H and HI that
defines η through equation Eq. (4.24)

From Eq. (5.2), if we have a physical problem described by a hermitian operator
Ĥ : H → H,1 then HI =M−1HM is hermitian acting in HI . This allows us to define H
1 We also can say that Ĥ is η-pseudo-hermitian.
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as the physical Hilbert space, and then we can establish a set of observables Ôi : H → H
by identifying the physical observables ôi : HI → HI with the canonical transformations

Ôi =MôiM−1 . (5.9)

Considering, for instance, H = L2 (Rn) as the Hilbert space for a continuum
system,2 we can take the phase-space coordinates ρi = qi and ρi+n = pi in order to define
the observables

%̂i =Mρ̂iM−1 . (5.10)

Thus, since a canonical transformation does not change the algebra of the operators, the
2n operators {%̂i} satisfy

[%̂i, %̂j ] = iΩij . (5.11)

Suppose now that we write down the Hamiltonian Ĥ : H → H using the variables
%̂i. A possible physical meaning for this Ĥ can be established by looking at the limit

Hc (%ic) = lim
h̄→0

Ĥ (%̂i)
∣∣∣∣
%̂i→%ic

, (5.12)

where %ic stand for the 2n classical coordinates of the phase-space. Assuming Hc does
exist, there is a classical theory that we can quantize in order to reproduce the quantum
system described by the physical Hilbert space H, using what is called the η-pseudo-
Hermitian canonical quantization scheme [17, 19,30]

{%ic, %jc}PB → −i [%̂i, %̂j ] , (5.13)

where {, }PB stands for the Poisson brackets and [, ] stands for the commutator.
The transformation in Ĥ can also be performed by using ĤI =M−1ĤM. The-

refore, ĤI : HI → HI is a hermitian operator, since HI has the canonical inner product.
The representation of the quantum system based on ĤI is called, for this reason, hermi-
tian representation. Besides, we can also try to find the classical Hamiltonian in the same
way as equation (5.12)

HIc (ρic) = lim
h̄→0

ĤI (ρ̂i)
∣∣∣∣
ρ̂i→ρic

. (5.14)

By examining the problem in section 4.4, we have already expected that both
quantum theories for Ĥ and ĤI are related through a canonical transformation. However,
now we know that this relation can be implemented through a unitary operator asMM,
as well as its relation with the metric operator in H. Furthermore, it turns out that there
is a quantum canonical transformation M that corresponds to the classical canonical
transformation R. The latter is exactly what we aimed before, that is, the study of a
classical-quantum correspondence for systems with finite energy levels.
2 L2 (Rn) denotes the Hilbert space for square integrable functions on Rn.
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5.3 η-Classical Limit
At this point of the present work, we hope that it is clear from the last section

that we are trying to achieve a connection between two pseudo-classical theories, related
by a classical canonical transformation and implemented by R ∈ SO(3, C), and two
quantum theories, related by a quantum canonical transformation implemented by a
unitary operator M. Moreover, there is the classical-quantum connection through the
canonical quantization scheme, which implies the existence of a classical limit.

So far, we have concluded that a complex field can describe a unitary theory.
However, we have also concluded that a complex field has a damped precession equa-
tion as a classical limit. For this reason, due the physical equivalence of the canonical
transformations, we should expect that the classical limit for pseudo-hermitian quantum
theories does not produce damping. In order to see this, we propose a classical limit for
pseudo-hermitian operators.

The main point is that, when a system is pseudo-hermitian, there is a metric
operator that defines the right inner product. Because of that, we should not take the
classical limit as in Eq. (3.22). Rather, we must evaluate

ni (t) = 〈ψ| ησ̂i |ψ〉 . (5.15)

In this case, since η is time-independent, the time evolution for σi (t), as in Eq. (3.23), is

ṅi (t) = i 〈ψ| η
[
Ĥ, σ̂i

]
|ψ〉 = −εijknj (t)Fk ,

or in a vector notation,
ṅ = −n×F . (5.16)

It is clear that (5.16) corresponds to the equations of motion of the pseudo-classical
theory Ĥ, that is, Eq. (3.11). But the role of Eq. (3.28) has to be better explained.
It follows from the fact that (3.28) is obtained when we use the inner product in Eq.
(3.22). When Ĥ is pseudo-hermitian, η should be used, furnishing (5.16). Consequently,
the prescription (3.22) can only be used if Ĥ is not pseudo-hermitian. In this case,
condition (3.36) does not hold and the classical theories are not related by a canonical
transformation. In other words, Ĥ and ĤI in this case are not physically equivalent
theories.



35

6 Rabi Problem

6.1 Semi-Classical Approach
So far we have developed a series of concepts, both in the pseudo-classical fra-

mework as well as in the pseudo-hermitian framework, using a formalism that assumes
general external fields. In this case, in order to attack a specific problem we can choose
a specific form for both B and F . This section has the latter as the main goal.

The choice we are about to make in order to explore the consequences of the
previously defined set up is somewhat based on the well-known Rabi problem. Because of
that, we will spend a few pages in order to define what is the Rabi problem, so that we
can compare with the theory we want to explore.

The Semi-Classical Rabi problem is defined as a spin 1/2 particle, confined in a
region of space, interacting with an external real oscillating magnetic field given by

BR = (B cos(ωt),B sin(ωt),Bz) . (6.1)

The main interest in this problem is to know how the field (6.1) promotes transitions
between the eigenstates of σ3, that is, the states of spin up and spin down, denoted by,

|+〉 =

 1
0

 and |−〉 =

 0
1

 , (6.2)

with eigenvalues
E+ =

Bz
2 and E− = −Bz2 . (6.3)

We will assume the initial condition |ψ, 0〉 = |−〉.
The Hamiltonian operator for this problem is

ĤR =
B

2 [cos(ωt)σ̂1 + sin(ωt)σ̂2] +
Bz
2 σ̂3 , (6.4)

which is explicitly time-dependent. In this case, we can not simply exponentiate ĤR

because there will be ordering problems. Although we can solve this by using the Dyson
series, there is a simpler and more elegant way of dealing with this that requires a simple
change of reference frame. The main point is that, if we go to the reference frame that
rotates with BR, the resulting magnetic field will not be time-dependent, and therefore,
the time evolution operator is obtained immediately. Let us see how it works.

The field (6.1) is rotating around the z-axis with frequency ω. Therefore, let us
rotate our reference frame around the z-axis with a time-dependent parameter θ = ωt.
This can be achieved by using the operator

R̂z(ωt) = exp
(
iωt

σ̂3
2

)
. (6.5)
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Imposing that the Schrodinger equation must be the same in both reference frames, under
a time-dependent linear transformation the Hamiltonian must transforms as

Ĥ = i
∂R̂z
∂t

R̂†z + R̂zĤRR̂
†
z , (6.6)

or explicitly,

Ĥ = (Bz − ω)
σ̂3
2 +

B

2 exp
(
iωt

σ̂3
2

)
[cos(ωt)σ1 + sin(ωt)σ2] exp

(
−iωtσ̂3

2

)
. (6.7)

Although it is not clear from (6.7), the Hamiltonian in the rotating reference
frame is indeed time-independent, as one can check by differentiating Ĥ with respect to
time. This implies that we can choose t = 0 in Eq. (6.7) for simplicity. Therefore, the
Hamiltonian in the reference frame that rotates with the field (6.1) is given by

Ĥ =
1
2 (δσ̂3 +Bσ̂1) , with δ = Bz − ω . (6.8)

The δ factor is usually called detuning.
In the rotating frame, the time-evolution operator Û(t) can be calculated by simply

exponentiating Ĥ. Then,

Û(t) = cos
(

ΩR

2 t

)
− i

ΩR
(δσ̂3 +Bσ̂1) sin

(
ΩR

2 t

)
, (6.9)

where the quantity ΩR is called Rabi frequency and is defined as

ΩR =
√
δ2 +B2 . (6.10)

Recalling that we want to evaluate the transition probability between |−〉 and |+〉,
assuming |ψ, 0〉 = |−〉, we need to know how an observer that rotates with the field sees
these states. For this purpose, we act with R̂z on the states |±〉. Since the rotation is
around the z-axis and |±〉 are eigenvectors of σ̂3, in the rotating frame these states will
only acquire a phase that will not contribute to transition probabilities. In this sense, we
can still use |±〉 to calculate the desired probabilities. Therefore,

∣∣∣〈+, Û (t)−
〉∣∣∣2 =

B2

Ω2
R

sin2
(

ΩR

2 t

)
. (6.11)

There are a few things that should be emphasized. First, when δ = 0, that is ω =

Bz, the frequency of the rotating field is exactly the difference between the energy levels of
|±〉. This particular value of ω is called resonance frequency and the Rabi frequency (6.10)
reduces to ΩR = B. Consequently, equation (6.11) says that, in the resonance frequency
ω = Bz, the probabilities oscillate with maximum amplitude. Also, in the absence of
the oscillating field, the eigenvalues of H(B = 0) are given by E± = ±1

2(Bz − ω), and
therefore, at the resonance there is no difference between the energy levels.
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6.2 Rabi Problem with Gilbert Damping term
We now give some motivation for choosing a specific form of the external field.

First of all, we are particularly interested in systems where the hermiticity is broken
continuously, namely by a real-valued parameter α. Secondly, when the hermiticity is
broken, we should have a theory with damping whose classical limit yields the LLG
equation. These two concepts together can be achieved by choosing the external field to
be

F =
1 + iα

1 + α2B ,with B ∈ R . (6.12)

Furthermore, since we want to use the Rabi problem as a known theory for comparison,
we choose the real external field to be the Rabi field (6.1). In this case, we will look at
the theory described by

FR = (F cos (ωt) ,F sin (ωt) ,Fz) =
1 + iα

1 + α2BR . (6.13)

Since we do not want to deal with time-dependent external fields, we also want
to look at the present theory in the rotating frame. In this case, performing the same
rotation (6.5), the external field is given by

F = (F1, 0,F3) , (6.14)

with
F1 = F =

1 + iα

1 + α2B and F3 = ∆ =
1 + iα

1 + α2Bz − ω . (6.15)

Note that, although this example is not the Rabi problem, it generates the Rabi
problem in the limit α→ 0. Furthermore, since for α 6= 0, in the non-rotating frame, the
field is given by (6.13), we can refer to α in this theory as the Gilbert damping.

6.3 The Problem
Let us start with the Hamiltonian (3.32), with the choices (6.15). In general, the

external field (6.14) yields a Hamiltonian operator that is neither hermitian nor pseudo-
hermitian. However, in this section we are mainly interested in seeing under what cir-
cumstances it is pseudo-hermitian.

In this case, the pseudo-classical theory is given by

H = −i(Fξ2ζ3 + ∆ζ1ζ2) . (6.16)

Performing the canonical transformation (3.35), we can write
ζ1

ζ2

ζ3

 =
1

ΩΩR


FB − δ∆ 0 Fδ +B∆

0 −ΩΩR 0
Fδ +B∆ 0 − (FB − δ∆)



ξ1

ξ2

ξ3

 , (6.17)
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where
Ω2 = F 2

1 + F 2
3 . (6.18)

The new Hamiltonian is given by

HI = −iΩ̃ (Bζ2ζ3 + δζ1ζ2) ,with Ω̃ =
Ω

ΩR
, (6.19)

and the canonical quantization for both theories yields

Ĥ =
1
2(Fσ̂1 + ∆σ̂3) (6.20)

ĤI =
Ω̃
2 (Bσ̂1 + δσ̂3) . (6.21)

As one can see, the limit α→ 0 implies Ĥ → ĤI .
Recalling that we are interested in the case where F = (F1, 0,F3) is a complex

field and B = Ω̃ (B, 0, δ) is a real field, we need Ω ∈ R. In this case, (6.17) is indeed
canonical and Ĥ is pseudo-hermitian. Therefore, we can follow the scheme previously
discussed to find the metric operator η that renders Ĥ hermitian,

∣∣∣ψη±〉 = 1
F

 ∆±Ω
F

 with E± = ±Ω
2 = ±1

2

√
F 2 + ∆2 (6.22)

and Ĥ
∣∣∣ψη±〉 = E±

∣∣∣ψη±〉. Also
|ψ±〉 =

1
B

 δ±ΩR

B

 with EI± = ±Ω
2 = ±Ω̃

2

√
B2 + δ2 (6.23)

and ĤI |ψ±〉 = EI± |ψ±〉. Following the soft-limit prescription, the isometry M can be
explicitly implemented by the unitary operator

M =
1

FΩR

 BΩ ∆ΩR − δΩ
0 FΩR

 , (6.24)

and the metric operator will be given by

η =
1

B2Ω2

 |F |2Ω2
R F ∗ΩR (δΩ− ∆ΩR)

F (δΩ− ∆∗ΩR) B2 |Ω|2 + |δΩ− ∆ΩR|2

 . (6.25)

Finally, one can check that the operator in (6.25) indeed renders Ĥ hermitian,
since

Ĥ† = ηĤη−1 and
〈
ψη±, ηψη±

〉
= δ±± , (6.26)

and the soft-limit α→ 0 yields H → HI .
Let us consider the dynamics of this problem. Since the Hamiltonian Ĥ is time-

independent, it can be exponentiated to obtain the transition amplitudes. For instance,
considering the initial condition

∣∣∣ψη0〉 = ∣∣∣ψη−〉, we have

〈
ψη+, ηψηt

〉
=
〈
ψη+, η exp (−iHt)ψη0

〉
= −i B

ΩR
sin

(
Ω
2 t
)

. (6.27)
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When α → 0, Eq. (6.27) yields the Rabi oscillations for a two-level system. Moreover,
equation Eq. (6.27) agree with the calculations in [44], in the sense that the Rabi frequency
Ω changes. However, unlike the proposal presented in [44], our states do not lose the
normalization condition under time evolution.

We then see that, when we can connect Ĥ and ĤI with a canonical transformation,
Ω ∈ R and there is no damping on the transition amplitudes. In this case, if we want to
go out of the rotating frame, we can not use R̂z as done in section 6.1. Instead, we must
use its equivalent in H, namely,

˜̂Rz =M−1R̂zM =
1
BΩ

 BΩe−
iωt
2 2i (δΩ− ∆ΩR) sin

(
ωt

2

)
0 BΩe

iωt
2

 . (6.28)

Following our prescription,

ĤR = i
∂R̂z
∂t

R̂−1
z + R̂zĤR̂

−1
z

=
1

2ΩR

 BzΩ− ω (ΩR −Ω) BΩ exp (−itω)
BΩ exp (iωt) −BzΩ + ω (ΩR −Ω)

 . (6.29)

In the soft-limit, the Hamiltonian associated to the Rabi problem in the non-rotating
frame is recovered. In summary, when condition (3.36) holds, this theory is still unitary,
as it should be, and there is no damping in the equations of motion, independent of the
reference frame.

It should also be mentioned that the example provided in this section contains a
canonical transformation between a complex field F and a real fieldB. This automatically
says that the Hamiltonian ĤI is hermitian, while Ĥ is pseudo-hermitian. However, the
general development also holds for two generic complex fields. In this case either both are
non-pseudo-hermitian or both are pseudo-hermitian. That is, the discussion will depends
on whether F 2

1 + F 2
3 is real or not. Again, there is no inconsistency since we will only

have physical equivalence between two theories that are either both unitary or both non-
unitary.
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7 Measurable Effects

7.1 Unitary configuration of the External Field
Let us turn our attention back to the constraint (3.36), which we rewrite here for

convenience
B2

1 +B2
3 = F 2

1 + F 2
3 . (7.1)

Using the example provided in the last chapter, the external complex field is

F = (F , 0, ∆) . (7.2)

Again, complex F describes, in general, a non-unitary theory. However, if it was obtained
from a real fieldB ∈ R, then the condition (7.1) holds and the theory is pseudo-hermitian
(unitary).

The relevant condition for that is

F 2 + ∆2 ∈ R , (7.3)

which directly implies the constraint

B2 = Bz
[
ω
(
1 + α2

)
−Bz

]
⇒ ω

(
1 + α2

)
Bz > B2

z for B,Bz,α 6= 0 . (7.4)

Also, since B is a real number, the condition B2 > 0 implies that either

ω
(
1 + α2

)
< Bz < 0 or 0 < Bz < ω

(
1 + α2

)
. (7.5)

The main point here is that, for any value of the external field but (7.4), Ĥ is
not pseudo-hermitian and there is damping in the equations of motion. In this case, we
interpret this result as the configuration of B such that the external field injects energy
in the system at the same rate it dissipates. When this happens, the classical limit is a
precession movement, that is Eq. (5.16), instead the LLG equation (2.13).

This is a possible test for the proposed theory, because, if we can produce, this
effective external field, we can adjust the parameters so that the damping vanishes.

7.2 Total Suppression of the Transition Amplitude
Another peculiar behavior of the proposed set up is the total suppression of the

usual resonant transition. When we explicitly write the constraints (7.4), we obtain the
transition amplitude

P =
∣∣∣〈ψη+, ηψηt

〉∣∣∣2 =
∣∣∣∣ BΩR

∣∣∣∣2 sin2
(
t

2
√
ω (Bz − ω)

)
. (7.6)
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The first thing we note is that there is a special frequency, namely the resonance frequency
of the undamped Rabi problem

ω = Bz , (7.7)

where the transition probability vanishes completely. Also, it should be noted that ω = Bz

is an allowed frequency of our theory, since B2
z

(
1 + α2

)
> B2

z . Therefore, in principle,
P → 0 is a possible effect for any non-vanishing value of α.

The total suppression of the transition amplitude can be interpreted as follows.
Since the external field is, when (7.4) holds, injecting energy in the system so that the
evolution is unitary, the energy available for the system to use in order to perform a
energy level transition is always less than the total energy that the fields provides. In this
case, we interpret the total suppression as the situation when there is no energy left for
the system to perform energy level transitions. In other words, the damping is dissipating
the same amount of energy that the external field is providing. That is, for a system with
a Gilbert damping factor α, the resonance occurs between the field and the damping,
rather than between the field and energy level transition.
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8 Final Remarks

In this work, the classical-quantum correspondence for a system with finite energy
levels and complex external field was analyzed. We showed that a non-unitary canonical
transformation on the quantum side can be classically implemented by a rotation R ∈
SO (n, C), where C stands for the field of the complex numbers rather than the real
numbers R. In this regard, we take a real field into a complex field both in classical and
quantum theory through a canonical transformation.

The main point in this description was to properly consider the unitarity. If we
connect two fields F and B, with Im(F ) 6= 0 and Im(B) 6= 0, both theories are non-
unitary and the classical limit yields a damping in the equations of motion. If we connect
two fields F and B, with Im(F ) = 0 and Im(B) = 0, both theories are unitary and the
classical limit yields the undamped precession equation. The latter is also the case when
Im(F ) 6= 0 and Im(B) = 0 and B2 = F 2 holds. This happens because, for real B, the
existence of the canonical transformation which changes F to B implies that the theory
described by F is pseudo-hermitian. At this point, we know that every pseudo-hermitian
theory can be made unitary by a proper choice of inner product. Also, since a complex
field describes damping, we interpret the pseudo-hermitian configuration of the external
field to be the one which injects energy into the system at the same rate it dissipates,
thus, suppressing the damping.

After recalling all these ideas and results, it should be noted that when B is real
and F is complex, there is a canonical transformation between a hermitian Hamiltonian
and a non-hermitian Hamiltonian. When B and F are time-independent, there is an
equality between both Hamiltonians, namely,

H (ζi (ξ)) = HI (ξi) . (8.1)

In this case, we conclude that the hermiticity is not a fundamental requirement of a
theory. Instead, the fundamental requirement is unitarity.

Using the pseudo-hermitian framework, we have also provided a schematic cons-
truction to explicitly compute the metric operator η in the Hilbert space where Ĥ is
hermitian. Beyond that, Ĥ has a Hermitian representation, namely ĤI , where ĤI is
hermitian with respect to the canonical inner product. This representation is well-known
from [19] for systems with infinite energy levels and defines two physically equivalent Hil-
bert spaces, namely H and HI . However, since our theory has a limit α→ 0 in which it
becomes unitary and ĤI → Ĥ, we emphasize that this interpretation requires a preferred
construction of the metric operator that renders the right limit as α → 0. We refer to
this as a soft-limit.
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Recent applications of the pseudo-hermitian set up suggests interesting perspecti-
ves for the developed framework. Topological properties of the theory can be explored, by
evaluating topological numbers such as the Berry Phase. A second quantization approach
of the Rabi problem can be investigated considering the open system as we have done
here. The properties of the group SO (n, C) can be explored linking this structure to
other physical scenarios. Finally, the developed formalism might be extended to lattice
systems, and in this case topological phase transitions at the exceptional points can be
explored.
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A Metric, Norm and Inner-Product

A.1 Metric
Metric spaces are more general than inner product spaces. Given any setM , which

does not need to be a vector space, a metric g in M is a map

g : M ×M → R+
0 (A.1)

which fulfills

• d (m,n) = d (m,n);

• d (m,n) ≥ 0 and is only zero when m = n;

• d (m, q) + d (q,n) ≥ d (m,n);

Also, the metric d should not be confused with a metric tensor from differential
geometry, although it also gives the notion of distances. Besides, a metric in a set M
induces a topology given by the open balls

Bd (x, r) = {y | d (x, y) < r} . (A.2)

The pair (M ,Bd (x, r)) is a topological metric space.

A.2 Norm
A norm on a vector space M is a real valued function which associates to an

element x ∈M , a number ||x||. A norm must fulfill

• ||x|| ≥ 0 and is only zero when x = 0;

• ||αx|| = |α| ||x||;

• ||x+ y|| ≤ ||x||+ ||y||;

If the norm is defined, M is a normed vector space. Also, the norm induces a
metric d (x, y) = ||x− y|| . However, not all norms come from a metric.
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A.3 Inner Product
A inner product is a notion which we can define on vector spaces. A operation

〈, 〉 : M ×M → C is an inner product if it fulfills

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;

• 〈αx, y〉 = α 〈x, y〉

• 〈x, y〉 = 〈y,x〉

• 〈x,x〉 ≥ 0 and is only zero when x = 0.

If the inner product is defined on M , then M is an inner product space. An
inner product induces a norm ||x|| =

√
〈x,x〉, which in turn, induces a metric d (x, y) =

||x− y|| =
√
〈x− y,x− y〉.

A.4 Summarizing

Inner product spaces ⊂ Normed spaces ⊂ Metric spaces
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