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1 Introduction

The study of black holes represents one of the best theoretical laboratories for theories
such as String Theory and M-theory. In fact, it has been found a relationship between thermody-
namics and black holes. For example, the first law of thermodynamics states the conservation of
energy, but in General Relativity we know that energy and mass are also related, therefore the
mass of black hole is also subjected to the laws of thermodynamics. It has lead to an analogy
between black hole physics and thermodynamics [1].

One of the most interesting results that involves black holes and thermodynamics was the
discovery of the Hawking radiation. Basically, quantum mechanics (in particular, the uncertainty
principle) indicates that the energy in any place cannot be zero (since it would be completely
known). This fact leads to the vacuum fluctuations, which can be interpreted as the constant
creation and annihilation of particles. When one pair of particles is created close to the horizon
of black hole, one member of the pair may fall in the black hole and the other member would
escape, appearing as the black hole is radiating. Treating the black hole as a black body, Stephen
Hawking calculated the temperature of black hole, obtaining

T =
h̄c3

8πkGM
(1.1)

where M is the mass of the black hole. But not only does a black hole have a temperature, it also
behaves as if it has entropy. It was discovered in 1974 by Stephen Hawking that

S =
Akc3

4h̄G
(1.2)

where A is the area of the horizon of the black hole. This relation shows that the area (a
geometric property) is directly related to the entropy (a thermodynamic property), suggesting a
deep connection between quantum gravity and thermodynamics. String Theory and M-theory
promise to explain the relationship between black holes and thermodynamics.

On the other hand, Statistical Mechanics has become the most powerful tool to under-
stand the thermodynamics of a system. It relies on the partition functions to fully describe
(thermodynamically) a system. But what is the partition function of a black hole? It is a problem
that physicists and mathematicians are trying to solve looking at the symmetries or simply by
guessing an expression.

To determine the entropy of a system, the partition function is essential. In physics,
the partition function enumerates the configurations of a system for a given set of quantum
numbers, but in mathematics the partition function is a little more subtle. The partition of a
number is a way to write that number as a sum of positive integers, for example: 4 = 2+ 2 but
also 4 = 1+1+1+1, thus 2+2 and 1+1+1+1 represent different partitions of 4. For a long
time, mathematicians did not succeed to find a formula that specified the number of partitions of
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any integer n. That is why Euler developed generating functions, which roughly speaking are
polynomials whose coefficients gives the number of partitions.

It has already been used the combinatorial power of partitions theory in quantum me-
chanics [2], a matter that we will present in detail here.

String Theory is another branch which has benefited a lot from Partitions Theory. The
degeneracy of states of string can be calculated through the partition functions. In [3] is shown
how to recognize the number of tachyonic states, massless states, etc, using the partition function.

We also explore the applicability of the partitions theory in the Bose-Einstein and Fermi-
Dirac statistics. In both cases leading to mathematical difficulties that were not surpassed, mainly
because the convergence of partition function is unknown, but it seems to be related to the
McMahon function and the Dedekind eta function. Thus, we left as an open problem for further
research.

Having in mind the above stated, we begin chapter two with a background in Partitions
Theory, stating the most relevant theorems to our work. In chapter 3 we present direct applications
of Partitions Theory in Quantum Mechanics, and after that applications of the partitions function
in the context of String Theory. Subsequently, in chapter 4 we offer several applications in
Statistical Mechanics, a branch in which partitions theory has found fertile terrain. We show how
Statistical Physics, despite rude approximations, allows to obtain formulas already known in
partitions theory, such as the Formula of Hardy-Ramanujan. The power of Statistical Mechanics
has allowed to go beyond, even to improve such a formula, a calculation that we present in detail.

Finally, we present a background of Multipartite Generating Functions (MGF), which
represent a generalization of the partition functions to higher dimensionality. We developed a
formula to calculate a polynomials related to MGF using Bell polynomials. Unfortunately we
did not found direct applications to physics, but it is being widely used in hyperbolic geometry
and other areas [4].
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2 The Elementary Theory of Partitions

In this first chapter we are going to present an intuitive idea of the theory of partitions
and after that we will introduce the theory formally and the terminology involved [5].

2.1 The idea behind

Mathematicians observed that numbers can be decomposed into parts and represented
by fundamental blocks. The fundamental theorem of arithmetic establishes the central role of
primes in number theory: any integer greater than 1 is either a prime itself or can be expressed
as a product of primes that is unique up to ordering [6], allowing to interpret the prime numbers
as the basic building blocks of the set N.

Thus, every number can be expressed in terms of a product of prime factors, which
represent the basis of the called [7] Multiplicative number theory. There is, however, another
way to approach the structure of numbers called Additive Number Theory. The basic idea of the
additive number theory is that every number can be expressed as the sum of other numbers, but in
this branch it has not been discovered any fundamental blocks or uniqueness in the representation
of natural numbers. The way in which any number can be represented by the sum of others is a
partition of the number. For example: Partitions of 4 are

4 = 3+ 1 (2.1)

4 = 2+ 2 (2.2)

Therefore, we say that {3,1} and {2,2} are partitions of 4. From this reasoning we might be
tempted to say that 1 is the fundamental block in the additive number theory, since every number
can be represented by a sum of 1s in a unique way (maybe I am speculating about it, but it seems
that 1 is, in fact, the fundamental structure in this context).

Since the age of Euler, mathematicians have tried to figure out the fundamental elements
of the additive number theory. It was Euler’s idea to introduce the partition function p(n) [8]:
defined as the number of ways of writing a positive integer n as a sum of strictly positive integers.
Euler observed that

(1+ x+ x2 + . . .)(1+ x2 + x4 + . . .)(1+ x3 + x6 + . . .) . . .= 1+ x+(x2 + x2)+ . . .

= 1+ x+ 2x2 + . . .

1
1− x

· 1
1− x2 ·

1
1− x3 · · ·= 1+∑ p(n)xn

in other words, the coefficients that result from that product gives exactly the number of partitions
of the exponent n.
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Goldbach Conjecture is one of the most interesting discoveries, stating that every even
n > 4 is the sum of two odd primes, giving some connection with prime numbers.

In the next section we are going to introduce the theory formally guided by [5].

2.2 Partitions

The fact that every n ∈N can be represented as the sum of other numbers ∈N, that is,
the number n can be expressed as the sum of smaller parts suggest the next definition

Definition. The sequence λ ≡ (λ1,λ2, ...,λr) with λi ∈N is a partition of n ⇐⇒

(a) ∑
r
i=1 λi = n

(b) λi ≥ λ j ∀i < j ∈ {1, ...,r}

λi ∈ λ are called the parts of the partition λ (i.e., the elements of the set λ ).
Example: Partition of number 4 is (3,2). Also, 4 can be partitioned in different ways:

(a) λ = (4)

(b) λ = (3,1)

(c) λ = (2,1,1)

(d) λ = (1,1,1,1)

therefore p(4) = 5 (a total of 5 partitions for 4).
Notation: λ ` n means that λ is a partition of n

We see that for different numbers there are different partitions, so naturally arise the
question: what is the number of partitions of a given number n?. This lead us to the next
definition

Definition. p(n) is the number of partitions of n, and is called partition function
Remark:

• p(n) ≡ 0 ∀n ∈Z−

• p(0) ≡ 1→ λ = ( ) empty sequence

• n = 1→ λ = (1)→ p(1) = 1

• n = 2→ λ = (2),λ = (1,1) = (12)→ p(2) = 2

• n = 4→

(a) λ = (4)
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(b) λ = (3,1)

(c) λ = (2,2) = (22)

(d) λ = (2,1,1) = (2,12)

(e) λ = (1,1,1,1) = (14)

→ p(4) = 5

Through an analogous reasoning, we can prove that

p(6) = 11 (2.3)

p(10) = 42 (2.4)

p(20) = 627 (2.5)

p(100) = 190569292 (2.6)

p(200) = 3972999029388 (2.7)

in other words, it increases very rapidly.
It has been discovered relations that the number of partitions of certain sets are related,

which justifies the next definitions.

Definition. Let J denote the set of all partitions
It means that ∀λ ≡ (λ1, . . . ,λk)→ λ ∈J ,

Definition. Let p(S ,n) denote the number of partitions of n that belong to a subset S ⊂J

Example: Let O be the set of all partitions with odd parts, and let D be the set of all
partitions with distinct parts, therefore

• n = 1, λ = (1)→ p(O ,1) = 1

• n = 2, λ = (2),λ = (1,1)→ p(O ,2) = 1

• n = 3, λ = (3),λ = (2,1),λ = (1,1,1)→ p(O ,3) = 2

• n = 1, λ = (1)→ p(D ,1) = 1

• n = 2, λ = (2),λ = (1,1)→ p(D ,2) = 1

• n = 3, λ = (3),λ = (2,1),λ = (1,1,1)→ p(D ,3) = 2

Sugesting that the number of partitions of a number with odd parts is equal to the number
of partitions with different parts. Immediately we ask: how many partitions have any number n?
or in how many ways can be partitioned that number?
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2.3 Infinite Product Generating Functions of one variable

The search of a formula to specify the number of partitions of a given n ∈N leads to
generating functions of partitions, which is not exactly a formula capable to predict the number
of partitions.

We are going to present a historical overview of the development of this branch, in order
to understand the generating functions.

2.3.1 Historical Overview.

In September 1740 Euler received a letter from Philippe Naude asking (among other
things) how to determine the number of ways in which a given positive integer can be expressed
as a sum of positive integers [9]. The problem of expressing a positive number as the sum of
others gave birth to the so called additive number theory

Historically, it is said that Euler, after many attempts to develop a formula to calculate
the number of partitions, observed that the product

(1+ x+ x2 + · · · )(1+ x2 + x4 + · · · )(1+ x3 + x6 + · · · ) · · ·= 1+∑ p(n)xn (2.8)

expands in a polynomial whose coefficients p(n) match with the number of partitions of the
exponent n. And, in particular, he observed that

(1− x)(1− x2) · · · (1− x51) = ∑
i

aixi (2.9)

where the coefficients ai = +1,0,−1, which can be generalized in

∞

∏
j=1

(1− x j) =
∞

∑
k=−∞

(−1)kxk(3k+1)/2 (2.10)

where k(3k+ 1)/2∀k ∈N are called pentagonal numbers (already studied by the ancient Greek
mathematicians). This result is known as the Euler´s pentagonal numbers theorem.

It is worth mentioning that those products represent the only method known to calculate
the number of partitions. The polynomial generated by that product lead to the Generating
Functions.

2.3.2 Formal Construction

The generating functions represent the most powerful tool in partitions theory, since no
physicist or mathematician has been able to find a direct procedure to calculate partitions. We
are going to present at a high detailed level the construction of generating functions
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Definition. The Generating Function [10] of the sequence {an(x)} of numbers or functions is
an expression of the form 1

F(x,w) =
∞

∑
n=0

an(x)wn. (2.11)

Definition. Let H be a set of positive integers, i.e., H ⊂Z+. Thus, we define

”H”≡ {Γ1, ...,Γi|Γr = (λ1, ...,λ j)→ λr ∈ H}

and p(”H”,n) represents the number of partitions of n that have all their parts in H. Note that
”H” is the set of partitions whose parts are in H.

Definition. Let H ⊂ Z+. We let ”H”(≤ d) denote the set of all partitions in which no part
appears more than d times and each part is in H, that is,

”H”(≤ d) ≡ {Γ1, ...,Γn|Γr = (...λ n
r , ...)→ n≤ d and λr ∈ H}

See Figure 1. Example: Let N⊂Z+→ p[”N”(≤ 1),n] = p(D ,n).
Suppose that n = 3, p[”N”(≤ 1),3] would represent the number of partitions of 3 whose

parts are in N and appears only one time, specifically (3), (2,1), i.e.,p[”N”(≤ 1),3] = 2 , that is
going to be the same number of partitions of 3 whose parts are different, as expected, because
the partitions of three whose parts are different are (3), (2,1), therefore p(D ,3) = 2, and finally
p(D ,3) = p[”N”(≤ 1),3] = 2 .

Figure 1 – Observe that ”H” is made of all the sets whose elements are partitions whose elements
are in H

What we are going to present is considered one of the greatest achievement in the
partition theory. Warning, we present two versions of the theorem.
1 Formal power series is a generalization of a polynomial, where the number of terms is allowed to be infinite,

one may think of a formal power series as a power series in which we ignore questions of convergence by not
assuming that the variable x denotes any numerical value (not even an unknown value)
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Theorem 2.3.1. (Theorem of Euler) For |x|< 1 we have

∞

∏
m=1

1
1− xm =

∞

∑
n=0

p(n)xn, (2.12)

where p(0) = 1
Proof: Based on the fact that

1
1− x

= 1+ x+ x2 + x3 + · · ·=
∞

∑
n=0

xn, ∀x ∈ IR : |x|< 1. (2.13)

Consider the product
∞

∏
m=1

1
1− xm =

1
1− x1 ·

1
1− x2 ·

1
1− x3 · · ·

1
1− x

=
∞

∑
n=0

xn =⇒ =

(
∞

∑
n=0

xn

)(
∞

∑
n=0

x2n

)(
∞

∑
n=0

x3n

)
· · ·

= (1+ x1·1 + x2·1 + x3·1 + · · · )(1+ x1·2 + x2·2 + x3·2 + · · · )×·· ·

· · ·× (1+ x1·3 + x2·3 + x3·3 + · · · ) · · ·

= 1+ x1·1 + x2·1 + x3·1 + · · ·+ x1·2 + x1·1x1·2 + x2·1x1·2 + x3·1x1·2 + · · ·

· · ·+ x2·2 + x1·1x2·2 + x2·1x2·2 + x3·1x2·2 + · · ·

observe that

x2·1 = x1+1 (2.14)

x1·2 = x2 (2.15)

x3·1 = x1+1+1 (2.16)

x1·3 = x3 (2.17)

x1x1·2 = x1+2 (2.18)
... =

... (2.19)

therefore
∞

∏
m=1

1
1− xm = 1+ x1 + x1+1 + x2︸ ︷︷ ︸

parts of 2

+ x1+1+1 + x1+2 + x3︸ ︷︷ ︸
parts of 3

+ · · · (2.20)

(2.21)

defining p(0) ≡ 0, we conclude that

∞

∏
m=1

1
1− xm =

∞

∑
n=0

p(n)xn. (2.22)

Note that we conjectured (based on the recurrence) that the coefficients of xn are the number of
partitions of n, however there are no guarantees of the convergence of the series Next we present
a complete proof.
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Theorem 2.3.2. Let H ⊂Z+ and let

f (q) ≡ ∑
n≥0

p(”H”,n)qn

fd(q) ≡ ∑
n≥0

p(”H”(≤ d),n)qn,

Therefore, ∀|q|< 1

• f (q) = ∏n∈H(1−q)n−1

• fd(q) = ∏n∈H(1+ qn + ...+ qdn) = ∏n∈H(1−q(d+1)n(1−qn)−1

Proof: Let H = {h1,h2, ...}

∏
n∈H

(1−qn)−1 = ∏
n∈H

(1+ qn + q2n + ...) (2.23)

= (1+ qh1 + q2h1 + · · · )(1+ qh2 + q2h2 + · · · )(1+ qh3 + q2h3 + · · · ) · · · (2.24)

=
∞

∑
a1=0

(qh1)a1 ·
∞

∑
a2=0

(qh2)a2 ·
∞

∑
a3=0

(qh3)a3 · · · (2.25)

=
∞

∑
a1=0

∞

∑
a2=0

∞

∑
a3=0
· · ·qa1h1+a2h2+a3h3+··· (2.26)

observe that the exponent of q is precisely the partition (ha1
1 ,ha2

2 ,ha3
3 , · · · ), thus we can rewrite

∞

∑
a1=0

∞

∑
a2=0

∞

∑
a3=0
· · ·qa1h1+a2h2+a3h3+··· =

∞

∑
n=0

pnqn (2.27)

being a1h1 + a2h2 + a3h3 + · · · a partition of n and pn the number of times that the exponent n

appears as a power, therefore

pn = p(”H”,n) =⇒ ∏
n∈H

(1−qn)−1 =
∞

∑
n=0

p(”H”,n)qn (2.28)

in particular, if H = Z+ then p(”H”,n) = p(n), therefore we can write

∏
n∈H

(1−qn)−1 =
∞

∑
n=0

p(n)qn (2.29)

which means that the number of parts of n, i.e., p(n) can be calculated from that expression. To
prove the second part of the theorem, we consider

fd(q) = ∏
n∈H

(1+ qn + · · ·+ qdn) (2.30)

= (1+ qh1 + · · ·+ qdh1)(1+ qh2 + · · ·+ qdh2) · · · (2.31)

=
d

∑
a1=0

qa1h1 ·
d

∑
a2=0

qa2h2 · · · (2.32)

=
d

∑
a1=0

d

∑
a2=0
· · ·qa1h1+a2h2··· =

∞

∑
n=0

pnqn (2.33)
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Thus, pn is the number of times that the sum a1h1 + a2h2 + · · · will appear and where ai ≤ d,
will not appear more than d times. Therefore:

∏
n∈H

(1+ qn + · · ·+ qdn) =
∞

∑
n=0

p(”H”(≤ d),n)qn (2.34)

This theorem is extremely powerful. It allows to calculate the number of partitions of
numbers whose parts have specific characteristics.

Generating Function The number of partitions of n into parts which are

∏
∞
n=1

1
1−x2n−1 odd

∏
∞
n=1

1
1−x2n even

∏
∞
n=1

1
1−xn2 squares

∏n∈p
1

1−xp primes

∏
∞
n=1(1+ xn) unequal

∏n∈p(1+ xn) distinct primes

Theorem 2.3.3. Corollary of Euler:

p(O ,n) = p(D ,n) ∀n ∈N

Proof: Given H0 ≡ {all odd integers} =⇒ O = ”H0”. By the last theorem

∞

∑
n=0

p(O ,n)qn = ∏
n∈H0

(1−qn)−1 (2.35)

=
∞

∏
n=1

(1−q2n−1)−1 (2.36)

on the other hand, D = {all partitions with distinct parts}. Thus, H1≡{1,2,3, . . .} =⇒ ”H1” =
D . Taking into account that d = 1

∞

∑
n=0

p(”H1”(≤ 1),n)qn = ∏
n∈H1

(1+ qn + · · ·+ qdn) = ∏
n∈H1

(1+ qn) (2.37)

∞

∑
n=0

p(D ,n)qn =
∞

∏
n=1

(1+ qn) · (1−qn)

(1−qn)
=

∞

∏
n=1

1−q2n

1−qn (2.38)
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considering the fact that

∞

∏
n=1

(1+ qn) =
∞

∏
n=1

1−q2n

1−qn =?
∞

∏
n=1

1
1−q2n−1 (2.39)

=⇒ ∑
n≥0

p(O ,n)qn = ∑
n≥0

p(D ,n)qn (2.40)

since expansion series of a function is unique we conclude that

p(O ,n) = p(D ,n).

2.4 The Hardy-Ramanujan Asymptotic Partition Formula

In the search of an exact formula for p(n), Hardy and Ramanujam found a formula
which approximates the asymptotic behavior. Details about the formula can be found in [5]. This
famous formula is

p(n) ≈ 1
4n
√

3
exp

(
π

√
2
3

n

)
. (2.41)

We will show later how this formula can be deduced via String Theory and Statistical Mechanics.
Also, this formula has been exploited in several areas of physics, especially String Theory and
Statistical Mechanics.

It is actually known an exact expression for p(n). According to the theorem 5.1 in [5]

p(n) =
1

π
√

2

∞

∑
k=1

Ak(n)k1/2

[
d
dx

sinh((π/k)(2
3(x−1/24))1/2)

(x−1/24)1/2

]
x=n

(2.42)

It was discovered in 1937 by Rademacher. Due to the complexity of the formula it is not widely
used compared to the Formula of Hardy-Ramanujan. In fact, theres is still some obscurity in
relation to the formula of Rademacher.
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3 Applications

We will try to show how the Partition Theory, and in particular, the generating functions
can be applied in Theoretical Physics.

This subject has already been considered before, and it is still used, especially to research
super-gravity and super-symmetric black holes (see [1] for details). The application of Partition
theory has already been used in quantum mechanics. For example, we can see in [2] an analogy
between counting the number of partitions and number of micro-states of a quantum system of
bosonic harmonic oscillators.

3.1 Harmonic Oscillator

Consider the system of one-dimensional quantum harmonic oscillators with frequency
ω obeying the Bose statistics. Let us count the number of ways to distribute the energy E in
this system. Each oscillator can occupy energy levels given by E j = h̄ω( j+ 1/2), where the
ground-state energy can be dropped off yielding

E j = h̄ω j, j = 0,1,2, . . .

A system of oscillators with E = 3h̄ω have the next possible configurations

• One particle into the level j = 3.

• One particle to the state j = 2, and another one into j = 1.

• Three particles into the state j = 1.

It is interesting to note that the order of the summands is not significant in partitions is
equivalent to the indistinguishably of quantum particles. Thus, given a system with a given energy
E, the number of particles and its levels of energy are limited by it. The possible combination
of creation operators is estimated by the theory of partitions. From the vacuum state |Ω >, the
possible states of the system are

• (a†
3)|Ω >

• (a†
2)(a

†
1)|Ω >

• (a†
1)

3|Ω >

Thus, we can see that the way in which the creation operators can be mixed can be
estimated from the ways the energy can be partitioned.
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Recall that the quantization of the scalar field gives the state of the system in terms of
creation and annihilation operators, that is, ([3] pg. 309)

(a†
p1
)n1(a†

p2
)n2 · · · (a†

pk
)nk |Ω〉 (3.1)

is a state which contains n1 particles with momentum ~p1, n2 with momentum ~p2, and so on. Let
us take into account that

|n〉= (a†)n |Ω〉 =⇒ H |n〉=
(

n+
1
2

)
ω |n〉 (3.2)

therefore, with |n〉 ≡ (a†
p1
)n1(a†

p2
)n2 · · · (a†

pk
)nk |Ω〉

H |n〉=
[(

n1 +
1
2

)
ωp1 +

(
n2 +

1
2

)
ωp2 + · · ·+

(
nk +

1
2

)
ωpk

]
|n〉 (3.3)

=

[
(n1ωp1 + n2ωp2 + · · ·+ nkωpk)+

1
2
(ωp1 +ωp2 + · · ·+ωpk)

]
|n〉 (3.4)

if ωp1 = ωp2 · · ·= ωpk ≡ ω , then

H |n〉=
[
(n1 + n2 + · · ·+ nk)+

1
2

k
]

ω |n〉 (3.5)

we can see that the total energy is E = (n1 + n2 + · · ·+ nk)+
1
2k, where the sum of the integers

n1+n2+ · · ·+nk fix the energy of the system, but not the configuration. Thus, the nis are limited
by the energy of the system.

3.2 Counting States

How to count the number of states that a string has at any given mass level can be
approached via Partitions Theory [3]. There exists an exact formula for p(n) presented in [5]
although extremely complicated. However the Theory of Partitions is capable to predict the
number of combinations through the generating functions, i.e., an expression of the form

f (x) =
∞

∑
n=0

a(n)xn (3.6)

where a(n) is the number of states with N⊥ = n, where N⊥ represents the auto value of the
number operator N̂⊥ ≡ nâ†

nân

Thus, if we have only one oscillator a†
1, then there is just one state |0〉 with N⊥ = 0, one

state a†
1|0〉 with N⊥ = 1 and so on. Thus the coefficients of xk in

f (x) = 1+ x+ x2 + x3 · · · (3.7)

gives the number of states with level N⊥ = k (which in this case is 1∀k)



3.3. Application to Bosonic Open String. 33

Now, suppose a system made of one oscillator a†
2 with mode number two. In this mode

number we can have the oscillator in |0〉 with N⊥ = 0, in a†
2|0〉 with N⊥ = 2, and so on. Through

the same reasoning, the coefficients of x2k in

f2(x) = 1+ x2 + x4 + · · · (3.8)

gives the number of states with N⊥ = 2k (wich, again, it is 1∀k).
Now, consider a system composed of both oscillators a†

1 and a†
2, what is the number of

states for a given mass level N⊥ = k? Example: Observe that for N⊥ = 3 we have the states
(a†

1)
3|0〉, a†

1a†
2|0〉, that is to say, two states. To say what is the number of states fo any given N⊥

is not possible, since in theory of partitions does not posses a formula to answer that question,
the only way is via the generating functions. Therefore, the generating function capable to say
(thorough the coefficients) the number of states with N⊥ = k is

f12(x) = f1(x) f2(x) = (1+ x+ x2 + x3 + · · · )(1+ x2 + x4 + x6 + · · · ) (3.9)

= 1+ x+ x2 + x3 + · · ·+ x2 + x3 + x4 + x5 + · · ·+ (3.10)

· · ·+ x4 + x5 + x6 + x7 + · · · (3.11)

= 1+ x+ 2x2 + 2x3 + · · · (3.12)

we can see that the coefficient of x3 (for which N⊥ = 3) is two (which is the number of states).
Note that the generating function is reduced to

f12(x) =
1

1− x
· 1

1− x2 (3.13)

To see how mix the oscillator operators consider

(1+ a†
1x+(a†

1)
2x2 + · · · )(1+ a†

2x2 +(a†
2)

4x4 + · · · ) (3.14)

Finally, if we have a†
1,a†

2,a†
3, . . . of all mode numbers, the generating function would be of the

kind
f (x) =

∞

∏
n=1

1
1− xn (3.15)

3.3 Application to Bosonic Open String.

In the theory of the bosonic open string[3] a general state |λ 〉 is specified by

|λ 〉=
∞

∏
n=1

25

∏
I=2

(
aI†

n

)λn,I ∣∣p+,~pT
〉

(3.16)

where
∣∣p+,~pT

〉
is the ground state, and the number λn,I denotes the number of times that the

creation operator aI†
n appears.
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It was proved that D = 26, but with D−2 = 24 transverse light-cone directions, with
oscillators of all modes for each direction, and taking into account that each specie of oscillator
gives a generating function, we have that the total generating function is

f (x) =
∞

∏
n=1

1
(1− xn)24 (3.17)

In a generating function based on α ′M2 the coefficient of xk counts the number of states
with α ′M2 = k. We know from [3] that for open bosonic strings α ′M2 = N⊥−1 so the α ′M2

generating function is obtained by dividing the N⊥ generating function by one power of x,
therefore

fos(x) =
1
x

∞

∏
n=1

1
(1− xn)24 (3.18)

i.e.,
fos(x) =

1
x
+ 24+ 324x+ 3200x2 + 25650x3 + · · · (3.19)

thus, the coefficient of x = −1 in which α ′M2 = −1 is 1, one tachyonic state. α ′M2 = 0→
M = 0 have coefficient 24 and therefore 24 massless states (Maxwell field), and 324 states with
α ′M2 = +1.

3.4 Neveu-Shwarz sector.

We know that the Neveu-Shwarz sector is a sector of the space states of super-symmetric
strings, and therefore it contains fermionic oscillators. Any state is a linear combination of

|λ 〉=
9

∏
I=2

∞

∏
n=1

(
aI
−n
)λn,I

9

∏
J=2

∏
r= 1

2 , 3
2 ,...

(
bJ
−r
)ρr,J |NS〉⊗

∣∣p+,~pT
〉

(3.20)

To specify the levels of states of the Neveu-Schwars sector is not an easy task. The first levels
are, specifying the eigenvalues of N⊥ and mass squared operator, we have

α
′M2 = −1

2
, N⊥ = 0 → |NS〉⊗

∣∣p+,~pT
〉

(3.21)

α
′M2 = 0, N⊥ =

1
2
→ bI

−1/2 |NS〉⊗
∣∣p+,~pT

〉
(3.22)

α
′M2 =

1
2

, N⊥ = 1 → {α I
−1,bI

−1/2bJ
−1/2}|NS〉⊗

∣∣p+,~pT
〉

(3.23)

α
′M2 = 1, N⊥ =

3
2
→ {α I

−1bJ
−1/2,bI

−3/2,bI
−1/2bJ

−1/2bK
−1/2}|NS〉⊗

∣∣p+,~pT
〉

(3.24)

showing first only one tachyonic state, secondly eight massless states. counting the rest can be
done using partitions theory.

Containing fermionic oscillators bJ
−r, which contributes to the operator number N⊥. With

a single fermionic creation operator b−r the contribution is r to N⊥, producing to possible states:
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|0〉 and b−r |0〉. Therefore, the generating function is

fr(x) = 1+ xr (3.25)

since the Neveu-Schwarz sector contains oscillators bI
−1/2,bI

−3/2, . . . in eight species, the gener-
ating function associated is[

(1+ x1/2)(1+ x3/2)(1+ x5/2) · · ·
]8

=
∞

∏
n=1

(1+ xn− 1
2 )8 (3.26)

taking into account that α ′M2 = N⊥− 1
2 and that we have eight bosonic coordinates as well, the

generating function fNS(x) is given by

fNS(x) =
1√
x

∞

∏
n=1

(
1+ xn− 1

2

1− xn

)8

(3.27)

after expansion we obtain

fNS(x) =
1√
x
+ 8+ 36

√
x+ 128x+ 402x3/2 + 1152x2 + · · · (3.28)

showing the tachyon at α ′M2 = −1/2, eight massless states, and 36 states at α ′M2 = 1/2.
Note that the theory of partitions can be used in the context of harmonic oscillator, this is

because the auto values of some operators, such as the Hamiltonian or the number operator, have
auto values related to integers. Therefore, wherever there are addition of numbers the partitions
theory will deal with the problem.
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4 Partitions and the Quantum Violin
String.

Another interesting application of Partitions Theory arise in the context of String Theory.
The quantum violin string is a quantum mechanical non-relativistic string with fixed endpoints.
A good background on this subject can be found on[3] 1

4.1 Quantum Violin String (V.S.) (approximation approach)

The Hamiltonian of the quantum violin string is given by

H ≡ h̄ω0

∞

∑
l=1

la†
l al (4.1)

where a†
l and al are the well known creation annihilation operators. From the Hamiltonian can

be recognize the number operator, which is

N ≡
∞

∑
l=1

la†
l al (4.2)

Being |Ω〉 the vacuum state of the string, a quantum state |Ψ〉 is obtained by letting creation
operators to act

|Ψ〉= (a†
1)

n1(a†
2)

n2 · · · (a†
l )

nl · · · |Ω〉 (4.3)

Given an Energy, say E = 4, it can be distributed among oscillators in different ways, i.e.,

E = 4→ [4], [3,1], [2,2], [2,1,1], [1,1,1,1] (4.4)

Ω represents number of configurations, which in this case is the number of partitions of E. Thus

Ω = P(N)→ S = k ln[P(N)] (4.5)

H ≡ h̄ω0N→ E = h̄ω0N, therefore

S = k ln[P(E/h̄ω0)] (4.6)

4.1.1 Partition Function

Statistical Mechanics tells us that

Z = ∑
i

e−βEi (4.7)

1 For details about the quantum violin string see: A first course in String Theory, Barto Zwiebach, offering an
elementary approach to String Theory.[3]
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For Quantum Violin String

Z = ∑
N

exp
[

EN

kT

]
(4.8)

= ∑
n1,n2,...

exp
[

h̄ω0

kT
(n1 + 2n2 + · · · )

]
(4.9)

= ∑
n1

exp
[

h̄ω0

kT
n1

]
·∑

n2

exp
[

h̄ω0

kT
2n1

]
· · · (4.10)

=
∞

∏
l=1

∑
nl

exp
[

h̄ω0

kT
lnl

]
(4.11)

Z =
∞

∏
l=1

[
1− exp

(
− h̄ω0l

kT

)]−1

. (4.12)

Note that this formula has exactly the form of the Euler’s theorem if we substitute x for
exp
(
− h̄ω0l

kT

)
.

4.1.2 Free Energy

Here we proceed to carry out an approximation of the free energy

F = −kT lnZ (4.13)

= kT
∞

∑
l=1

ln
[

1− exp
(
− h̄ω0l

kT

)]
(4.14)

If l is continuous
F ≈ kT

∫
∞

1
dl ln

[
1− exp

(
− h̄ω0l

kT

)]
(4.15)

x≡ h̄ω0

kT
l =⇒ F ≈ kT

∫
∞

h̄ω0
kT =1

kT
h̄ω

dx ln
[
1− e−x] (4.16)

taking into account that

ln(1− x) = −
(

x+
1
2

x2 + · · ·
)

=⇒ ln(1− e−x) = −
(

e−x +
1
2

e−2x + · · ·
)

(4.17)

therefore

F ≈ (kT )2

h̄ω0

∫
∞

0
dx
(
e−x + e−2x + e−3x · · ·

)
(4.18)

≈−(kT )2

h̄ω0

[
1+

1
22 +

1
32 + · · ·

]
(4.19)

≈−(kT )2

h̄ω0
ζ (2) = − 1

h̄ω0

π2

6
1

β 2 (4.20)
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4.1.3 Entropy

Based on the free energy, let us proceed to calculate the entropy, which will be connected
to the number of configurations

S = −∂F
∂T
≈ k

π2

3
kT
h̄ω0

(4.21)

but taking into account that

E = −∂ lnZ
∂β

=
∂

∂β
(βF) (4.22)

=⇒ E =
π2

6

(
kT
h̄ω0

)2

=⇒
(

kT
h̄ω0

)
=

√
6E

π2h̄ω0
(4.23)

substituting in the expression for the entropy

S≈ kπ

√
2
3

N (4.24)

But the Boltzmann entropy is given by

S = k ln[p(N)] =⇒ ln[p(N)] ≈ π

√
2
3

N (4.25)

p(N) ≈ exp

(
π

√
2
3

N

)
(4.26)

which is the leading term of the Hardy-Ramanujan formula

4.2 Approach without Approximation.

In the last section the approximation was done through the logarithm

F = kT
∞

∑
l=1

ln
[

1− exp
(
− h̄ω0

kT
l
)]

(4.27)

S = −∂F
∂T

= −k
∞

∑
l=1

ln
[

1− exp
(
− h̄ω0

kT
l
)]

+
h̄ω0

T

∞

∑
l=1

l exp
(
− h̄ω0

kT l
)

1− exp
(
− h̄ω0

kT l
) (4.28)

with x≡ h̄ω0β l

=⇒ S =
∞

∑
x

h̄ω0β
=1

[
xe−x

1− e−x − ln(1− e−x)

]
(4.29)
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Trying to carry out the same reasoning as before, we consider that

E =
∂

∂β
(βF) =

∂

∂β

∞

∑
l=1

ln
[

1− exp
(
− h̄ω0

kT
l
)]

(4.30)

=
∞

∑
l=1

[1− exp (−h̄ω0β l)]−1 (−1)exp (−h̄ω0β l) · (−h̄ω0l) (4.31)

= h̄ω0

∞

∑
l=1

l exp (−h̄ω0β l)
1− exp (−h̄ω0β l)

(4.32)

=
1
β

∞

∑
x

h̄ω0β
=1

xe−x

1− e−x (4.33)

=⇒ S = kβE− k
∞

∑
x

h̄ω0β
=1

ln(1− e−x) (4.34)

If we consider that

E =
∂

∂β

∞

∑
x

h̄ω0β
=1

ln(1− e−x) =⇒
∞

∑
x

h̄ω0β
=1

ln(1− e−x) =
∫

dβ ·E(β ) (4.35)

The entropy with no approximation can be writen as

S =
h̄ω0

T
N− k

∫
dβE(β ) (4.36)

It is interesting to note that in [2] was obtained an expression that relates statistical mechanics
and partitions given by

s(β ) = βE + lnZ(β ) = βE−
∞

∑
j=1

ln
(

1− e−β j
)

(4.37)

which is in complete agreement with the expression for the entropy found in the context of the
violin string (taking k = 1).

4.2.1 Some considerations of the Difficulties.

The entire problem with the no-approximation-approach is

∞

∑
l=1

l exp(−h̄ω0β l)
1− exp(−h̄ω0β l)

=? (4.38)

and ultimately is the Free energy, i.e.,

∞

∑
l=1

ln [1− exp(−h̄ω0β l)] =? (4.39)

The last expression has been studied and is related to the Dedekind Eta Function η(τ):
∞

∑
l=1

ln [1− exp(−h̄ω0β l)] =
h̄ω0β

24
+ ln

[
η

(
h̄ω0β i

2π

)]
(4.40)
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Therefore, the entropy can actually be calculated with ”complete" precision

S = kβE− k
[

h̄ω0β

24
+ ln

[
η

(
h̄ω0β i

2π

)]]
(4.41)

where
η(τ) ≡ e

iπτ

12

∞

∏
n=1

(
1− e2niπτ

)
(4.42)

However, the problem also lies on the Partition function

Z =
∞

∏
l=1

[
1− exp

(
− h̄ω0l

kT

)]−1

(4.43)

limiting the calculations and physical interpretations.

4.3 Partition Function (statistical Mechanics) and Partition
Function (Theory of Partitions)

Here we use directly the generating functions in thermodynamics

Z =
∞

∏
l=1

[
1− exp

(
− h̄ω0l

kT

)]−1

(4.44)

It is interesting to note that in the context of the theory of partitions we have that

f (x) =
∞

∏
n=0

(1− xn)−1 =
∞

∑
n=0

p(n)xn (4.45)

Thus, taking x≡ exp(−h̄ω0/kT ) we obtain that the partition function in thermodynamic context
is

Z =
∞

∑
n=0

p(n)xn =
∞

∑
n=0

p(n)exp
(
− h̄ω0

kT
n
)

(4.46)

We might think that it is a simpler way to write and manipulate the partition function, and
theoretically It would allow us to obtain thermodynamical results. well, Let us see

4.3.1 Free energy

By definition

F = −kT lnZ = −kT ln

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]

(4.47)

therefore the entropy is

S = −∂F
∂T

= k ln

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]

+ kT
∂

∂T
ln

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]

(4.48)
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and the energy

E =
∂

∂β
(βF) = − ∂

∂β
ln

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]

(4.49)

if we take into account that S = k ln(p(N), then we have that

ln(p(N)) = ln

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]

+T
∂

∂T
ln

[
∞

∑
n=0

p(n)exp
(
− h̄ω0

kT
n
)]

(4.50)

or

p(N) =

[
∞

∑
n=0

p(n)exp
(
−h̄ω0

kT
n
)]
· exp

[
T

∂

∂T
ln

[
∞

∑
n=0

p(n)exp
(
− h̄ω0

kT
n
)]]

(4.51)

It appears to give no clue, but it is very interesting the relation between p(N) and p(n).

4.4 Alternative approach to the Formula of Hardy-Ramanujan

Here we basically reproduce the deduction of the formula of Hardy-Ramanudam based
on [2]. Let Γ(E) be the number of micro-states with energy E, then

Z(β ) = ∑
j

e−βE j =
∫

∞

0
Γ(E)e−βEdE (4.52)

Note in the last expression that Z(E) is the Laplace transform of Γ(E). Thus, the inverse Laplace
transform is

Γ(E) =
1

2πi

∫
γ+i∞

γ−i∞
Z(β )eβEdβ (4.53)

→ S(β ) = k lnΓ(E) (4.54)

= k ln
[

1
2πi

∫
γ+i∞

γ−i∞
Z(β )eβEdβ

]
(4.55)

The strategy lies on the fact that

S(β ) = βE + lnZ(β ) =⇒ Z(β ) = eS(β )−βE (4.56)

and the number of micro-states is obtained by

Γ(E) =
eS(β0)√

2πS′′(β0)
(4.57)

and through this approach, we take the substitution

E→ n, Γ(E)→ p(n) (4.58)

The partition function of a system of one-dimensional harmonic oscillators obeying the Bose
statistics

Z =
∞

∏
j=1

1
1− eβ h̄ω j

(4.59)
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taking h̄ω ≡ 1. Therefore, the entropy is

S(β ) = βE−
∞

∑
j=1

ln
(

1− e−β j
)

(4.60)

using the Euler-Maclaurin Formula

∞

∑
j=1

f ( j) =
∫

∞

1
f (x)dx+

f (1)
2
− 1

12
f ′(1)+ . . . (4.61)

in the approximation that β → 0 the first term becomes

ln
(

1− e−βx
)
= −

(
e−βx +

1
2

e−2βx +
1
3

e−3βx + . . .

)
(4.62)∫

∞

0
ln
(

1− e−βx
)

dx = −
∫

∞

0

(
e−βx +

1
2

e−2βx +
1
3

e−3βx + . . .

)
dx (4.63)

= − 1
β

(
1+

1
22 +

1
32 + · · ·

)
= − 1

β
ζ (2) = −π2

6β
(4.64)

next term

f (x) = ln
(

1− e−βx
)

(4.65)

= lnβx− βx
2

+ . . . (4.66)

=⇒ f (1) = lnβ − 1
2

β (4.67)

the last term

f ′(x) =
1
x
− β

2
(4.68)

=⇒ f ′(1) = 1− 1
2

β (4.69)

substituting we obtain that

∞

∑
j=1

ln
(

1− e−β j
)
= −π2

6β
+

1
2

lnβ − 1
4

β − 1
12

+
1
24

β (4.70)

= −π2

6β
+

1
2

lnβ − 5
24

β − 1
12

(4.71)

Therefore the entropy is reduced to

S(β ) = βE +
π2

6β
− 1

2
lnβ +

5
24

β +
1

12
. . . (4.72)

=
π2

6β
− 1

2
lnβ +β

(
E +

5
24

)
(4.73)

If we consider E >> 0 we get

S(β ) =
π2

6β
− 1

2
lnβ +βE (4.74)
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S′(β ) = − π2

6β 2 −
1

2β
+E = 0 (4.75)

as β → 0 we can write

E =
π2

6β 2 =⇒ β0 =
π√
6E

(4.76)

and therefore

S′′(β0) =
3π2

12β 3
0
=

2
√

6
π

E3/2 (4.77)

Substituting for Γ(E) we obtain

Γ(E) =
eS(β0)√

2πS′′(β0)
(4.78)

S(β0) = 2π

√
E
6

=⇒ Γ(E) =
eπ
√

2E/3

4
√

3E
(4.79)

changing Γ(E)→ p(n) and E→ n, we finally obtain

p(n) =
eπ
√

2n/3

4
√

3n
(4.80)

Which is exactly the formula of Hardy-Ramanujam, obtained after a very rude approximation of
Statistical Mechanics.

4.5 Correction of the Formula of Hardy-Ramanujan

Here we present an approximation of p(n) that surpassed the Formula of Hardy-
Ramanujan. Taking the expression for Z(β ) in Γ(E) we obtain that

Γ(E) =
1

2πi

∫
γ+i∞

γ−i∞
eS(β )dβ (4.81)

Let β0 be a stationary point, such that S′(β0) = 0, we consider the Taylor series in the vicinity of
β0

S(β ) ≈ S(β0)+
1
2!

S′′(β0)(β −β0)
2 +

1
3!

S′′′(β0)(β −β0)
3 (4.82)

substituting the approximation of S(β ) in the expression for Γ(E)

Γ(E) ≈ eS(β0)

2πi

∫
γ+i∞

γ−i∞
exp
[

1
2!

S′′(β0)(β −β0)
2 +

1
3!

S′′′(β0)(β −β0)
3
]

dβ (4.83)

taking β = ix+β0 the integral is reduced to

Γ(E) ≈ eS(β0)

2πi

∫
∞

−∞

exp
[
− 1

2!
S′′(β0)x2− 1

3!
S′′′(β0)ix3

]
dx (4.84)

≈ eS(β0)

2πi

∫
∞

−∞

e−
1
2! S
′′(β0)x2

[
cos
(

S′′′(β0)

3!
x3
)
− isin

(
S′′′(β0)

3!
x3
)]

dx (4.85)

≈ eS(β0)

2πi

∫
∞

−∞

e−
1
2! S
′′(β0)x2

cos
(

S′′′(β0)

3!
x3
)

dx (4.86)



4.5. Correction of the Formula of Hardy-Ramanujan 45

taking for granted that

∫
∞

−∞

e−bx2
cos(ax3)dx =

2be2b3/27a2
K1/3

(
2b3

27a2

)
3
√

3|a|
(4.87)

with a = S′′′(β0)/6 and b = 1
2S′′(β0) we obtain

Γ(E) =
eS(β0)

2π

2S′′(β0)√
3|S′′′(β0)|

exp

[
(S′′(β0))

3

3 (S′′′(β0))
2

]
K1/3

(
(S′′(β0))

3

3 (S′′′(β0))
2

)
(4.88)

where Kν(x) is the Bessel function of the second kind, in complete agreement with [11]. As
stated before

S(β ) = S(β0)+
1
2!

S′′(β0)(β −β0)
2 +

1
3!

S′′′(β0)(β −β0)
3 (4.89)

and taking into account that

S(β0) = 2π

√
E
6

(4.90)

S′′(β0) =
2
√

6
π

E3/2 (4.91)

S′′′(β0) = −
36
π2 E2 (4.92)

therefore

S(β ) = 2π

√
E
6
+

√
6

π
E3/2

(
β − π√

6E

)2

+
9

π2 E2
(

β − π√
6E

)3

(4.93)

the argument of the Bessel function becomes

(S′′(β0))
3

3 (S′′′(β0))
2 =

(
2
√

6
π

E3/2
)3

3
(
− 36

π2 E2
)2 =

48π
√

6
3888

E1/2 =
π

27

√
2
3

E (4.94)

Now, the argument of the exponential

S(β0)+
(S′′(β0))

3

3 (S′′′(β0))
2 = 2π

√
E
6
+

π

27

√
2
3

E (4.95)

= π

√
2
3

E +
π

27

√
2
3

E (4.96)

=
28
27

π

√
2
3

E (4.97)

substituting, we obtain

Γ(E) =
1

18 4√E3/4
e

28
27 π

√
2
3 EK1/2

(
1

27
π

√
2
3

E

)
(4.98)

changing E→ n and Γ(E)→ p(n)

p(n) =
1

18 4√n3/4
e

28
27 π

√
2
3 nK1/2

(
1

27
π

√
2
3

n

)
(4.99)

offering a better approximation of the of p(n).
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5 Multipartite Generating Functions

In this chapter we present an extension of the Partition theory to higher dimensions[5],
a subject extensively used in [12]. Basically, instead of considering numbers and studying its
partitions we are going to consider vectors made of integers, and study the partitions associated
to these vectors.

5.1 Vector Composition

Definition. A partition of (α1,α2, . . . ,αr) is a set of vectors (β (i)
1 ,β (i)

2 , . . . ,β (i)
r ),1≤ i≤ s such

that
s

∑
i=1

(β
(i)
1 ,β (i)

2 , . . . ,β (i)
r ) = (α1,α2, . . . ,αr)

if the order of the parts is taken into account we call (β (1)
1 , . . . ,β (1)

r ), . . . , (β (s)
1 , . . . ,β (s)

r ) a
composition of (α1, . . . ,αr), that is,

(α1,α2, . . . ,αr) ≡ {(β
(i)
1 ,β (i)

2 , . . . ,β (i)
r ),1≤ i≤ s|

s

∑
i=1

(β
(i)
1 , . . . ,β (i)

r ) = (α1, . . . ,αr)} (5.1)

Definition. We let P = (α1, . . . ,αr;m) denote the number of partitions with m parts, and we
let c(α1, . . . ,αr;m) denote the number of compositions of (α1, . . . ,αr) with m parts. Example:
P(2,1,1;2) = 5, since there are five partitions of (2,1,1) into two parts

(a) (2,1,0)(0,0,1)

(b) (2,0,1)(0,1,0)

(c) (2,0,0)(0,1,1)

(d) (1,1,0)(1,0,1)

(e) (1,1,1)(1,0,0)

Definition. We let P(α1, . . . ,αr) ≡ total number of partitions of (α1, . . . ,αr)

Note that
P(α1, . . . ,αr) = ∑

m≥1
P(α1, . . . ,αr;m)

and let c(α1, . . . ,αr) ≡ total number of compositions. Note that

c(α1, . . . ,αr) = ∑
m≥1

c(α1, . . . ,αr;m)
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5.2 Multipartite Generating Functions

In an analogous way, with the purpose to answer the number of partitions of a given
vector, it has been developed the Multipartite Generating functions.

Definition. Let P(n) = P(n1, . . . ,nr) denote the number of partitions of n≡ (n1, ...,nr), i.e.,

n = ξ
(1)+ ξ

(2)+ . . .+ ξ
(r) (5.2)

ξ
(i) = (ξ

(i)
1 ,ξ (i)

2 , . . . ,ξ (i)
r ), ξ

(i) ≥ ξ
( j) ∀i, j ∈R (5.3)

,∀ξ (i) ≤ j → P≤(n; j), where P≤(n; j) represents the number of parts of the partition with
elements less than j.

Let Q(n) denote the number of partitions of n and into distinct parts, and Q(n, j) the
number of such partitions with j parts. Thus, we can announce a generalized theorem based on
Euler´s pentagonal theorem.

Theorem 5.2.1.

∑
n1,...,nr≥0

P(n)xn1
1 · · ·x

nr
r = ∏

n1≥0,··· ,nr≥0
(1− xn1

1 xn2
2 · · ·x

nr
r )
−1 (5.4)

∑
n1,...,nr≥0

Q(n)xn1
1 · · ·x

nr
r = ∏

n1≥0,··· ,nr≥0
(1− xn1

1 xn2
2 · · ·x

nr
r ) (5.5)

with |xl| ≤ 1

5.3 Cheema’s Extension of Euler’s Theorem.

Theorem 5.3.1. For every n, Q+(n) equals O(n), the number of partitions of n in which each

part (ξ (i)
1 , . . . ,ξ (i)

r ) has at least one odd component Proof.

1+ ∑
(n>(0))

Q+(n)xn1
1 · · ·x

nr
r = ∏

(n)>(0)
(1+ xn1

1 xn2
2 · · ·x

nr
r ) (5.6)

= ∏
(n)>(0)

(
1− x2n1

1 x2n2
2 · · ·x2nr

r

)
(1− xn1

1 xn2
2 · · ·x

nr
r )

(5.7)

= ∑
(n>(0))

(1− xn1
1 xn2

2 · · ·x
nr
r )
−1 (5.8)

= ∑
(n>(0))

O(n)xn1
1 xn2

2 · · ·x
nr
r (5.9)

→ Q+(n) = O(n) ∀n
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5.4 Bell Polynomials

Bell Polynomials arise naturally from differentiating a composite function n-times.
Suppose that h(t) ≡ f (g(t)), hence

dh
dt

=
d
dt

f (g(t)) =
d f
dg

dg
dt

(5.10)

d2h
dt2 =

d
dt

(
d f
dg

dg
dt

)
(5.11)

=
d
dt

(
d f
dg

)
dg
dt

+
d f
dt

d2g
dt2 (5.12)

=
d2 f
dg2

(
dg
dt

)2

+
d f
dt

d2g
dt2 (5.13)

Defining

hn ≡
dnh
dtn , fn ≡

d2 f
dgn , gn ≡

dng
dtn (5.14)

we can write

h1 = f1g1 (5.15)

h2 = f2g2
1 + f1g2 (5.16)

h3 = g3 f1 +(3g1g2) f2 + g3
1 f3 (5.17)

... (5.18)

hn =
n

∑
k=1

Bnk(g1, . . . ,gn−k+1) fk (5.19)

where the coefficients Bnk(g1, . . . ,gn−k+1) of the derivatives fk are the partial Bell Polynomials.

Definition. The complete Bell Polynomial is

Yn(g1, . . . ,gn) =
n

∑
k=1

Bnk(g1, . . . ,gn−k+1) (5.20)

taking h(t) ≡ eg(t) then

Yn(g1, . . . ,gn) = e−g(t) dneg(t)

dtn (5.21)

which completely specified the Bell’s Polynomials, providing the important recurrence formula:

Yn+1(g1, . . . ,gk+1) = e−gDn(Deg) (5.22)

= e−gDn(g1Deg) (5.23)

=
n

∑
k=0

(
n
k

)
(e−gDn−keg)Dkg1 (5.24)

=
n

∑
k=0

(
n
k

)
Yn−k(g1, . . . ,gk+1 (5.25)
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The first complete Bell Polynomials are:

B0 = 1, (5.26)

B1(x1) = x1, (5.27)

B2(x1,x2) = x2
1 + x2, (5.28)

B3(x1,x2,x3) = x3
1 + 3x1x2 + x3, (5.29)

B4(x1,x2,x3,x4) = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4, (5.30)

B5(x1,x2,x3,x4,x5) = x5
1 + 10x2x3

1 + 15x2
2x1 + 10x3x2

1 + 10x3x2 + 5x4x1 + x5 (5.31)

(5.32)

This expression allows to obtain the generating function of the Bell polynomials [5]

B=
∞

∑
n=0

Ynun

n!
(5.33)

Leading to

logB=
∞

∑
n=1

gnun

n!
(5.34)

If we exponentiate and expand the infinite product of exponential functions, we obtain

Yn(g1, . . . ,gn) = ∑
(k)`n

n!
k1! · · ·kn!

(g1

1!

)k1
(g2

2!

)k2
· · ·
(gn

n!

)kn
(5.35)

an expression that we will use in the next section.

5.5 Bell Polynomials in Multipartite Partition Problems

Based on [4], let

P j(x1, . . . ,xr) = P j = 1+ ∑
(n)>0

P≤(n; j)xn1
1 · · ·x

nr
r (5.36)

Q j(x1, . . . ,xr) = Q j = 1+ ∑
(n)>0

Q(n; j)xn1
1 · · ·x

nr
r (5.37)

F(u) = 1+ ∑
j=1

P ju j (5.38)

G(u) = 1+
∞

∑
j=1

Q ju j (5.39)

where the coefficients P j are given by [4]

P j = Yj (0!βr(1),1!βr(2),2!βr(3),3!βr(4), ..., ( j−1)!βr( j))/ j! (5.40)
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where

β j(m) ≡
j

∏
i=1

(1− xm
i )
−1. (5.41)

Now, consider

F(u) ≡∏
n≥0

(1−uxn1
1 xn2

2 · · ·x
nr
r )−1 (5.42)

G(u) ≡∏
n≥0

(1+ uxn1
1 xn2

2 · · ·x
nr
r ) (5.43)

Therefore

logF(u) = −∑
n≥0

log(1−uxn1
1 xn2

2 · · ·x
nr
r ) (5.44)

=
∞

∑
m=1

∑
n≥0

umxn1m
1 xn2m

2 · · ·xnrm
r

m
(5.45)

=
∞

∑
m=1

um

m
(1− xm

1 )
−1(1− xm

2 )
−1 · · · (1− xm

r )
−1 (5.46)

= ∑
m=1

um

m!
(m−1)!βr(m) (5.47)

Showing manifestly a generating function form.

5.6 General Formula

According to [12], the generating function F(z,X) can be written as

F(z,X) = 1+
∞

∑
j=1

P j(x1,x2, . . . ,xm)z j (5.48)

We developed a formula to calculate the P j coefficients.
It is actually possible to write a generalized formula for P j. We take for granted from

[5] (equation (12.3.7)), that

Yn(g1, . . . ,gn) = ∑
(k)`n

n!
k1! · · ·kn!

(g1

1!

)k1
(g2

2!

)k1
· · ·
(gn

n!

)kn
(5.49)

using the expression of P j given by the theorem we can write

P j =
1
j!

Yj (0!βr(1),1!βr(2),2!βr(3),3!βr(4), ..., ( j−1)!βr( j)) (5.50)

=
1
j! ∑

(k)` j

j!
k1! · · ·k j!

(
0!βr(1)

1!

)k1
(

1!βr(2)
2!

)k1

· · ·
(
( j−1)!βr( j)

j!

)k j

(5.51)
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and substituting explicitly βr(m)

P j = ∑
(k)` j

1
k1! · · ·k j!

(
0!βr(1)

1!

)k1
(

1!βr(2)
2!

)k2

· · ·
(
( j−1)!βr( j)

j!

)k j

(5.52)

= ∑
(k)` j

1
k1! · · ·k j!

(
0!
1!

r

∏
i=1

(1− x1
i )
−1

)k1
(

1!
2!

r

∏
i=1

(1− x2
i )
−1

)k2

· · · (5.53)

· · ·

(
( j−1)!

j!

r

∏
i=1

(1− x j
i )
−1

)k j

(5.54)

= ∑
(k)` j

j

∏
n=1

1
kn!

(
(n−1)!

n!

r

∏
i=1

(1− xn
i )
−1

)kn

(5.55)

= ∑
(k)` j

j

∏
n=1

1
kn!

1
nkn

r

∏
i=1

(1− xn
i )
−kn (5.56)

P j = ∑
(k)` j

j

∏
n=1

1
kn!

1
nkn

1
∏

r
i=1(1− xn

i )
kn

, (5.57)

representing a very compact formula. We present examples about how to use it in the appendix.

5.7 P j in terms of R(s).

Based on [4], R(s) is the so called Ruelle spectral function, where they showed that

βm(n) =
R(s = n(m+ 1)(1− iρ(ϑ ))+ 1−n)

R(s = n(1− iρ(ϑ ))+ 1−n)
. (5.58)

As we know from eq. (6,48)

P j = ∑
(k)` j

1
k1! · · ·k j!

(
0!βr(1)

1!

)k1
(

1!βr(2)
2!

)k2

· · ·
(
( j−1)!βr( j)

j!

)k j

(5.59)

= ∑
(k)` j

j

∏
n=1

1
kn!

(
βr(n)

n

)kn

(5.60)

P j = ∑
(k)` j

j

∏
n=1

1
kn! ·nkn

[
R(s = n(r+ 1)(1− iρ(ϑ ))+ 1−n)

R(s = n(1− iρ(ϑ ))+ 1−n)

]kn

. (5.61)

Expressions of this kind is being used in the context of hiperbolic geometry and eliptic genera.
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6 Conclusion and Perspectives

We showed how Partition Theory can be applied in Quantum Mechanics, Statistical
Physics, and String Theory. We observed how Quantum Mechanics and String Theory benefited
form partitions theory. In the case of Quantum Mechanics, it uses partitions directly to estimate
the degeneracy of the states, particularly the harmonic oscillator. String Theory uses the
combinatorial power of the partition theory, in particular it uses the Generating Functions
to estimate the number of states of the string. Recall that the state of the string depends on a
set of creation-operators, as the energy of the string increases the number of operators and their
combination also increases, making difficult to count the number of states of the string in each
level. But Partitions theory offers a quick solution.

The case of Statistical Mechanics resulted to be the opposite. It appears that Statistical
Mechanics helps Partitions Theory. We showed how after rude approximations in the partition
function and free energy leads to the formula of Hardy-Ramanujan. What is more, it was possible
to improve the Hardy-Ramanujan approximation via Statistical Mechanics.

On the other hand, we tried to exploit the Bose-Einstein and Fermi-Dirac Statistics to
obtain results about Partitions Theory. We did not succeed in that purpose, but we hope that
future researchers, considering our approach and taking into account our difficulties, may obtain
fruitful results.

Finally, after exploring the Multipartite Generating functions, we developed a formula to
produce the polynomials that are the coefficients of the generating functions. The polynomials
are generated by the Bell’s polynomials, where a general formula was presented with examples.
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APPENDIX A – Examples of P j the
coefficients.

Here we present first a calculation of P j using facts of chapter 5. In section 2 we
generate a compact formula to calculate P j, testing it with additional examples.

A.1 Examples

P j = Yj (0!βr(1),1!βr(2),2!βr(3),3!βr(4), ..., ( j−1)!βr( j))/ j! (A.1)

where

β j(m) ≡
j

∏
i=1

(1− xm
i )
−1 (A.2)

A.1.1 Example 1: P2

P2 =
Y2(0!βr(1),1!βr(2))

2!
(A.3)

But

Yn(y1,y2, ...) = e−y dn

dtn ey (A.4)

→ Y2(y1,y2) = e−y d2

dt2 ey (A.5)

= e−y d
dt

(eyy1) (A.6)

= e−y (eyy2
1 + eyy2

)
(A.7)

= y2
1 + y2 (A.8)
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Therefore

P2 =
β 2

r (1)+βr(2)
2

(A.9)

=
1
2

( r

∏
i=1

(1− xi)
−1

)2

+
r

∏
i=1

(1− x2
i )
−1

 (A.10)

=
1
2

[
r

∏
i=1

1
(1− xi)2 +

r

∏
i=1

1
(1− xi)(1+ xi)

]
(A.11)

=
1
2

r

∏
i=1

1
(1− xi)

[
1

∏
r
i=1(1− xi)

+
1

∏
r
i=1(1+ xi)

]
(A.12)

P2 =
1
2

∏
r
i=1(1− xi)+∏

r
i=1(1+ xi)

∏
r
i=1(1− xi)(1− x2

i )
(A.13)

A.1.2 Example 2: P3

Through the same procedure

P3 = Y3(0!βr(1),1!βr(2),2!βr(3))/3! (A.14)

But

Yn(y1,y2, ...) = e−y dn

dtn ey (A.15)

→ Y3(y1,y2,y3) = e−y d3

dt3 ey (A.16)

= e−y d2

dt2 (e
yy1) (A.17)

= e−y d
dt

(
eyy2

1 + eyy2
)

(A.18)

= e−y (eyy3
1 + ey2y1y2 + eyy1y2 + eyy3

)
(A.19)

= y3
1 + 3y1y2 + y3 (A.20)

Therefore

Y3(0!βr(1),1!βr(2),2!βr(3)) = βr(1)3 + 3βr(1)βr(2)+ 2!βr(3) (A.21)
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P3 =
1
6

( r

∏
i=1

(1− xi)
−1

)3

+ 3

(
r

∏
i=1

(1− xi)
−1

)(
r

∏
i=1

(1− x2
i )
−1

)
+ 2

(
r

∏
i=1

(1− x3
i )
−1

)
(A.22)

=
1
6

[
r

∏
i=1

1
(1− xi)3 + 3

r

∏
i=1

1
1− xi

1
1− x2

i
+ 2

r

∏
i=1

1
1− x3

i

]
(A.23)

=
1
6

[
1

∏
r
i=1(1− xi)3 +

3
∏

r
i=1(1− xi)2(1+ xi)

+
2

∏
r
i=1(1− x3

i )

]
(A.24)

=
1
6

1
∏

r
i=1(1− xi)2

[
1

∏
r
i=1(1− xi)

+
3

∏
r
i=1(1+ xi)

]
+

1
3∏

r
i=1(1− x3

i )
(A.25)

=
1
6

1
∏

r
i=1(1− xi)2

[
3∏

r
i=1(1− xi)+∏

r
i=1(1+ xi)

∏
r
i=1(1− x2

i )

]
+

1
3∏

r
i=1(1− x3

i )
(A.26)

=
1
6

[
3∏

r
i=1(1− xi)+∏

r
i=1(1+ xi)

∏
r
i=1(1− x2

i )(1− xi)2

]
+

1
3∏

r
i=1(1− x3

i )
(A.27)

A.1.3 Example 3: P4

Again, through the same procedure

P4 = Y3(0!βr(1),1!βr(2),2!βr(3),3!βr(4))/4! (A.28)

But

Yn(y1,y2, ...) = e−y dn

dtn ey (A.29)

→ Y4(y1,y2,y3,y4) = e−y d4

dt4 ey (A.30)

= e−y d3

dt3 (e
yy1) (A.31)

= e−y d2

dt2

(
eyy2

1 + eyy2
)

(A.32)

= e−y d
dt

(
eyy3

1 + ey2y1y2 + eyy1y2 + eyy3
)

(A.33)

= e−y d
dt

(
y3

1 + 3y1y2 + y3
)

ey (A.34)

= e−y [(3y2
1y2 + 3y2

2 + 3y1y3 + y4)ey +
(
y3

1 + 3y1y2 + y3
)

eyy1
]

(A.35)

= y4 + 4y3y1 + 6y2
1y2 + 3y2

2 + y4
1 (A.36)

= y4
1 + 6y2

1y2 + 3y2
2 + 4y1y3 + y4 (A.37)
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Y4(0!βr(1),1!βr(2),2!βr(3),3!βr(4)) = βr(1)4 + 6βr(1)2
βr(2)+ 3βr(2)2 + ... (A.38)

...+ 4 ·2βr(1)βr(3)+ 6βr(4) (A.39)

= βr(1)4 + 6βr(1)2
βr(2)+ 3βr(2)2 + ... (A.40)

...+ 8βr(1)βr(3)+ 6βr(4) (A.41)

(A.42)

Therefore

P4 =
1
4!

( r

∏
i=1

(1− xi)
−1

)4

+ 6

(
r

∏
i=1

(1− xi)
−1

)2( r

∏
i=1

(1− x2
i )
−1

)
+ ... (A.43)

... +3

(
r

∏
i=1

(1− x2
i )
−1

)2

+ 8

(
r

∏
i=1

(1− xi)
−1

)(
r

∏
i=1

(1− x3
i )
−1

)
+ 6

(
r

∏
i=1

(1− x4
i )
−1

)
(A.44)
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APPENDIX B – Calculation of P j

through the General Formula.

B.1 Calculation of P2

P2 = ∑
(k)`2

2

∏
n=1

1
kn!

1
nkn

1
∏

r
i=1(1− xn

i )
kn

(B.1)

= ∑
(k)`2

1
k1!

1
1k1

1
∏

r
i=1(1− x1

i )
k1

1
k2!

1
2k2

1
∏

r
i=1(1− x2

i )
k2

(B.2)

(B.3)

observe that the sum runs over the partitions of 2. From the first chapter of Andrew’s book

p(2) = 2 : 1+ 1 = (12), 2 = (2) (B.4)

from which is clear that (k) = (k1 = 2,k2 = 0), (k1 = 0,k2 = 1)1, therefore

P2 =
1
2!

1
12

1
∏

r
i=1(1− xi)2

1
0!

1
20

1
∏

r
i=1(1− x2

i )
0 +

1
0!

1
10

1
∏

r
i=1(1− xi)0

1
1!

1
21

1
∏

r
i=1(1− x2

i )
1

(B.5)

=
1
2

[
1

∏
r
i=1(1− xi)2 +

1
∏

r
i=1(1− x2

i )

]
(B.6)

rearranging terms in exactly the same way as the first part we obtain:

P2 =
1
2

∏
r
i=1(1− xi)+∏

r
i=1(1+ xi)

∏
r
i=1(1− xi)(1− x2

i )
(B.7)

which is exactly the same expression shown by [5] eq. (12.3.8)

B.2 Calculation of P3 (again)

with j = 3 we can write that

P3 = ∑
(k)`3

3

∏
n=1

1
kn!

1
nkn

1
∏

r
i=1(1− xn

i )
kn

(B.8)

= ∑
(k)`3

1
k1!

1
1k1

1
∏

r
i=1(1− x1

i )
k1

1
k2!

1
2k2

1
∏

r
i=1(1− x2

i )
k2

1
k3!

1
3k3

1
∏

r
i=1(1− x3

i )
k3

(B.9)

1 the sum follows a convention in which the base represents the value of n for kn and the exponent the value of kn
itself. Example: (12) = (1220) = (k1 = 2,k2 = 0)
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with a similar procedure, the sum runs over the partitions of 3, which are

1+ 1+ 1 = (13)→ (k1 = 3,k2 = 0,k3 = 0) (B.10)

2+ 1 = (1121)→ (k1 = 1,k2 = 1,k3 = 0) (B.11)

3 = (31)→ (k1 = 0,k2 = 0,k3 = 1) (B.12)

therefore, a sum of three terms

P3 =
1
3!

1
13

1
∏

r
i=1(1− x1

i )
3

1
0!

1
20

1
∏

r
i=1(1− x2

i )
0

1
0!

1
30

1
∏

r
i=1(1− x3

i )
0
+ ... (B.13)

...+
1
1!

1
11

1
∏

r
i=1(1− x1

i )
1

1
1!

1
21

1
∏

r
i=1(1− x2

i )
1

1
0!

1
30

1
∏

r
i=1(1− x3

i )
0
+ ... (B.14)

...+
1
0!

1
10

1
∏

r
i=1(1− x1

i )
0

1
0!

1
20

1
∏

r
i=1(1− x2

i )
0

1
1!

1
31

1
∏

r
i=1(1− x3

i )
1

(B.15)

=
1
6

1
∏

r
i=1(1− xi)3 +

1
2

1
∏

r
i=1(1− xi)

1
∏

r
i=1(1− x2

i )
+

1
3

1
∏

r
i=1(1− x3

i )
(B.16)

=
1
6

[
1

∏
r
i=1(1− xi)3 + 3

1
∏

r
i=1(1− xi)(1− x2

i )
+ 2

1
∏

r
i=1(1− x3

i )

]
(B.17)

which is exactly the same result obtained through the other way (compare to eq. 22)

B.3 Calculation of P4 (again)

Now we are going to face the beast.

P4 = ∑
(k)`4

4

∏
n=1

1
kn!

1
nkn

1
∏

r
i=1(1− xn

i )
kn

= ∑
(k)`4

1
k1!

1
1k1

1
∏

r
i=1(1− x1

i )
k1

1
k2!

1
2k2

1
∏

r
i=1(1− x2

i )
k2

1
k3!

1
3k3

1
∏

r
i=1(1− x3

i )
k3

1
k4!

1
4k4

1
∏

r
i=1(1− x4

i )
k4

The partitions of 4

1+ 1+ 1+ 1 = (14)→ (k1 = 4,k2 = 0,k3 = 0,k4 = 0) (B.18)

2+ 1+ 1 = (122)→ (k1 = 2,k2 = 1,k3 = 0,k4 = 0) (B.19)

2+ 2 = (22)→ (k1 = 0,k2 = 2,k3 = 0,k4 = 0) (B.20)

3+ 1 = (13)→ (k1 = 1,k2 = 0,k3 = 1,k4 = 0) (B.21)

4 = (4)→ (k1 = 0,k2 = 0,k3 = 0,k4 = 1) (B.22)
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Expanding the sum

P4 =
1
4!

1
14

1
∏

r
i=1(1− xi)4 +

1
2!

1
12

1
∏

r
i=1(1− xi)2

1
1!

1
21

1
∏

r
i=1(1− x2

i )
1 + ... (B.23)

...+
1
2!

1
22

1
∏

r
i=1(1− x2

i )
2 +

1
1!

1
11

1
∏

r
i=1(1− xi)1

1
1!

1
31

1
∏

r
i=1(1− x3

i )
1
+ ... (B.24)

...+
1
1!

1
41

1
∏

r
i=1(1− x4

i )
1 (B.25)

=
1

24
1

∏
r
i=1(1− xi)4 +

1
4

1
∏

r
i=1(1− xi)2(1− x2

i )
+

1
8

1
∏

r
i=1(1− x2

i )
2 + ... (B.26)

...+
1
3

1
∏

r
i=1(1− xi)(1− x3

i )
+

1
4

1
∏

r
i=1(1− x4

i )
(B.27)

=
1

24

[
1

∏
r
i=1(1− xi)4 + 6

1
∏

r
i=1(1− xi)2(1− x2

i )
+ 3

1
∏

r
i=1(1− x2

i )
2 + ... (B.28)

...+ 8
1

∏
r
i=1(1− xi)(1− x3

i )
+ 6

1
∏

r
i=1(1− x4

i )

]
(B.29)

Comparing to eq. 44, we can see that is exactly the same result.

B.4 P2 in terms of R(s).

P2 = ∑
(k)`2

2

∏
n=1

1
kn! ·nkn

[
R(s = n(r+ 1)(1− iρ(ϑ ))+ 1−n)

R(s = n(1− iρ(ϑ ))+ 1−n)

]kn

(B.30)

= ∑
(k)`2

1
k1! ·1k1

[
R(s = n(r+ 1)(1− iρ(ϑ ))+ 1−1)

R(s = 1(1− iρ(ϑ ))+ 1−1)

]k1

(B.31)

· 1
k2! ·2k2

[
R(s = 2(r+ 1)(1− iρ(ϑ ))+ 1−2)

R(s = 2(1− iρ(ϑ ))+ 1−2)

]k2

(B.32)

Partitions of 2

1+ 1 = (12)→ (k1 = 2,k2 = 0) (B.33)

2 = (21)→ (k1 = 0,k2 = 1) (B.34)

(B.35)

therefore

P2 =
1
2!

[
R(s = n(r+ 1)(1− iρ(ϑ )))

R(s = 1(1− iρ(ϑ )))

]2

· 1
0!

[
R(s = 2(r+ 1)(1− iρ(ϑ ))+ 1−2)

R(s = 2(1− iρ(ϑ ))+ 1−2)

]0

+ ...

(B.36)

...+
1
0!

[
R(s = n(r+ 1)(1− iρ(ϑ )))

R(s = 1(1− iρ(ϑ )))

]0

· 1
1! ·21

[
R(s = 2(r+ 1)(1− iρ(ϑ ))+ 1−2)

R(s = 2(1− iρ(ϑ ))+ 1−2)

]1

(B.37)

=
1
2

[
R(s = n(r+ 1)(1− iρ(ϑ )))

R(s = 1− iρ(ϑ ))

]2

+
1
2

R(s = 2(r+ 1)(1− iρ(ϑ ))−1)
R(s = 2(1− iρ(ϑ ))−1)

(B.38)
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B.5 P3 in terms of R(s).

P3 = ∑
(k)`3

3

∏
n=1

1
kn! ·nkn

[
R(s = n(r+ 1)(1− iρ(ϑ ))+ 1−n)

R(s = n(1− iρ(ϑ ))+ 1−n)

]kn

= ∑
(k)`3

1
k1! ·1k1

[
R(s = 1(r+ 1)(1− iρ(ϑ ))+ 1−1)

R(s = 1(1− iρ(ϑ ))+ 1−1)

]k1

1
k2! ·2k2

[
R(s = 2(r+ 1)(1− iρ(ϑ ))+ 1−2)

R(s = 2(1− iρ(ϑ ))+ 1−2)

]k2

· · ·

· · · 1
k3! ·3k3

[
R(s = 3(r+ 1)(1− iρ(ϑ ))+ 1−3)

R(s = 3(1− iρ(ϑ ))+ 1−3)

]k3

taking the partitions of 3

1+ 1+ 1 = (13)→ (k1 = 3,k2 = 0,k3 = 0) (B.39)

2+ 1 = (1121)→ (k1 = 1,k2 = 1,k3 = 0) (B.40)

3 = (31)→ (k1 = 0,k2 = 0,k3 = 1) (B.41)

therefore

P3 = ∑
(k)`3

1
k1!

[
R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

]k1 1
k2! ·2k2

[
R(s = 2(r+ 1)(1− iρ(ϑ ))−1)

R(s = 2(1− iρ(ϑ ))−1)

]k2

· · ·

(B.42)

· · · 1
k3! ·3k3

[
R(s = 3(r+ 1)(1− iρ(ϑ ))−2)

R(s = 3(1− iρ(ϑ ))−2)

]k3

(B.43)

=
1
3!

[
R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

]3 1
0!

[
R(s = 2(r+ 1)(1− iρ(ϑ ))−1)

R(s = 2(1− iρ(ϑ ))−1)

]0

· · · (B.44)

· · · 1
0!

[
R(s = 3(r+ 1)(1− iρ(ϑ ))−2)

R(s = 3(1− iρ(ϑ ))−2)

]0

+ ... (B.45)

...+
1
1!

[
R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

]1 1
1! ·2

[
R(s = 2(r+ 1)(1− iρ(ϑ ))−1)

R(s = 2(1− iρ(ϑ ))−1)

]1

· · ·

(B.46)

· · · 1
0!

[
R(s = 3(r+ 1)(1− iρ(ϑ ))−2)

R(s = 3(1− iρ(ϑ ))−2)

]0

+ ... (B.47)

...+
1
0!

[
R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

]0 1
0!

[
R(s = 2(r+ 1)(1− iρ(ϑ ))−1)

R(s = 2(1− iρ(ϑ ))−1)

]0

· · ·

(B.48)

· · · 1
1! ·3

[
R(s = 3(r+ 1)(1− iρ(ϑ ))−2)

R(s = 3(1− iρ(ϑ ))−2)

]1

(B.49)
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P3 =
1
6

[
R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

]3

(B.50)

+
1
2

R(s = (r+ 1)(1− iρ(ϑ )))

R(s = (1− iρ(ϑ )))

R(s = 2(r+ 1)(1− iρ(ϑ ))−1)
R(s = 2(1− iρ(ϑ ))−1)

(B.51)

...+
1
3

R(s = 3(r+ 1)(1− iρ(ϑ ))−2)
R(s = 3(1− iρ(ϑ ))−2)

. (B.52)


	Capa
	Folha de rosto
	Approval
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 The Elementary Theory of Partitions
	2.1 The idea behind
	2.2 Partitions
	2.3 Infinite Product Generating Functions of one variable
	2.3.1 Historical Overview.
	2.3.2 Formal Construction

	2.4 The Hardy-Ramanujan Asymptotic Partition Formula

	3 Applications
	3.1 Harmonic Oscillator
	3.2 Counting States
	3.3 Application to Bosonic Open String.
	3.4 Neveu-Shwarz sector.

	4 Partitions and the Quantum Violin String.
	4.1 Quantum Violin String (V.S.) (approximation approach)
	4.1.1 Partition Function
	4.1.2 Free Energy
	4.1.3 Entropy

	4.2 Approach without Approximation.
	4.2.1 Some considerations of the Difficulties.

	4.3 Partition Function (statistical Mechanics) and Partition Function (Theory of Partitions)
	4.3.1 Free energy

	4.4 Alternative approach to the Formula of Hardy-Ramanujan
	4.5 Correction of the Formula of Hardy-Ramanujan

	5 Multipartite Generating Functions
	5.1 Vector Composition
	5.2 Multipartite Generating Functions
	5.3 Cheema's Extension of Euler's Theorem.
	5.4 Bell Polynomials
	5.5 Bell Polynomials in Multipartite Partition Problems
	5.6 General Formula
	5.7 Pj in terms of R(s).

	6 Conclusion and Perspectives
	Bibliography
	Apêndices
	A Examples of Pj the coefficients.
	A.1 Examples
	A.1.1 Example 1: P2 
	A.1.2 Example 2: P3
	A.1.3 Example 3: P4


	B Calculation of Pj through the General Formula.
	B.1 Calculation of P2
	B.2 Calculation of P3 (again)
	B.3 Calculation of P4 (again)
	B.4 P2 in terms of R(s).
	B.5 P3 in terms of R(s).


